Depending on how you measure, today or tomorrow is the end of the first third of 2023, so it's a good time to check in.For a better estimate take the number of launches so far in 2023. Divide the remaining days in the year by the most recent average pace for the number of launches that would occur at that pace. Add that projection to the current tally for a second projection.And it seems to be settling in the mid 80's, quite a bit short of 100.But we shall see.....
These should diverge as time goes on if the pace accelerates but it turns out the two are still pretty similar after one third of the yearAnn it seems to be settling in the mid 80's, quite a bit short of 100.But we shall see.....
import numpy as npfrom scipy.optimize import fsolvefrom scipy.integrate import quaddaysinto2023 = 31+28+31+30+1timenow = 1+daysinto2023/365 #time in years since Jan 1, 2022print("How many days has it been since the start of 2023:", daysinto2023)launchesnow = 29 #launches that there has been from Jan 1, 2023 until nowprint("How many launches has there been since the start of 2023:", launchesnow)def equation(b,timenow,launchesnow): return (61/(np.exp(b) - 1))*(np.exp(b*(timenow)) - np.exp(b)) - launchesnowb = fsolve(equation, 0.5,args=(timenow,launchesnow))print("b:",b)A = b*61/(np.exp(b) -1)print("A:",A)def integrand(t,A,b): return A*np.exp(b*t)result, error = quad(integrand, 1, 2,args=(A,b))print("The estimated number of launches in 2023:", result)
The estimated number of launches in 2023: 106.67206531644885
Quoteimport numpy as npfrom scipy.optimize import fsolvefrom scipy.integrate import quaddaysinto2023 = 31+28+31+30+1timenow = 1+daysinto2023/365 #time in years since Jan 1, 2022print("How many days has it been since the start of 2023:", daysinto2023)launchesnow = 29 #launches that there has been from Jan 1, 2023 until nowprint("How many launches has there been since the start of 2023:", launchesnow)def equation(b,timenow,launchesnow): return (61/(np.exp(b) - 1))*(np.exp(b*(timenow)) - np.exp(b)) - launchesnowb = fsolve(equation, 0.5,args=(timenow,launchesnow))print("b:",b)A = b*61/(np.exp(b) -1)print("A:",A)def integrand(t,A,b): return A*np.exp(b*t)result, error = quad(integrand, 1, 2,args=(A,b))print("The estimated number of launches in 2023:", result)QuoteThe estimated number of launches in 2023: 106.67206531644885Well as of today, with 29 total launches (including Starship/Superheavy IFT), 61 flights last year, then they're on track for over 100 launches (~107 as of now), assuming compounding improvement fitted to those two facts.
SLC-4E is currently trending towards 25 or 26 launches while LC-39A is behind it's 2022 launch rate. With all the Dragon and Heavy launches, LC-39A is far enough behind I even deleted the trend line. With all the special mission, prediction is just nonsensical. With Axiom Mission 2 and CRS SpX-28 I do think LC-39A will shortly catch up. Then fall behind prepping for USSF-52 and EchoStar 24.
Over 3,000 in we’ll under a year. V2/A4
Quote from: redneck on 05/17/2023 03:19 pmOver 3,000 in we’ll under a year. V2/A4I don’t think suborbital munitions should count. Lots of missiles have flown in large numbers in conflicts, such as SCUDs in Afghanistan and of course solid rockets for hundreds of years.
The ASDS cycle time seems shorter on the west coast and the weather and sea stability seems more reliable as well.
Quote from: Robotbeat on 05/17/2023 03:33 pmQuote from: redneck on 05/17/2023 03:19 pmOver 3,000 in we’ll under a year. V2/A4I don’t think suborbital munitions should count. Lots of missiles have flown in large numbers in conflicts, such as SCUDs in Afghanistan and of course solid rockets for hundreds of years.Only munitions launch to orbit should count. Which isn't that many that is publicly acknowledge, if any.