Let me restate my question. My understanding and paraphrasing of the claim is: If a body in free fall travels more than halfway around the globe without impacting, it will always make it all the way around (ignoring drag, etc.). My question is, is that a true statement?
My searching has failed me, but back during the discussion of "orbital" vs. "3/4 of the way around the Earth" someone made a statement that anything that goes more than halfway around the globe has to be "orbital". (I'm assuming this claim is only talking about a ballistic segment of the flight.)
Little change of subject, but shouldn't an orbital Starship be a named vehicle? Lindberg flew the "Spirit of Saint Louis," and all of the space shuttles were named, most aircraft are named, all boats and so on.Maybe this need to be its own topic thread?
Quote from: aero on 06/04/2021 06:49 pmLittle change of subject, but shouldn't an orbital Starship be a named vehicle? Lindberg flew the "Spirit of Saint Louis," and all of the space shuttles were named, most aircraft are named, all boats and so on.Maybe this need to be its own topic thread?I would personally really like them to have names very Culture-esque. no idea whether it will happen though
Quote from: Giovanni DS on 06/04/2021 12:47 pmIs it safe to leave those raptors on the sea floor? I imagine those would be worth fishing out for some, not necessarily friendly, entity.It is safe to leave them on the sea bed.Same goes for the RS-25, the F-1 and even the RD-180. Apart from Jeff Bezos nobody has ever bothered to pick them up from the ocean floor. Not even the Chinese.Also, why do people always assume that wreckage from engines is enough to reverse-engineer them? I can tell you that it is not nearly enough to make a working clone.
Is it safe to leave those raptors on the sea floor? I imagine those would be worth fishing out for some, not necessarily friendly, entity.
Quote from: daedalus1 on 06/04/2021 02:51 pmQuote from: mark_m on 06/04/2021 02:38 pmMy searching has failed me, but back during the discussion of "orbital" vs. "3/4 of the way around the Earth" someone made a statement that anything that goes more than halfway around the globe has to be "orbital". (I'm assuming this claim is only talking about a ballistic segment of the flight.)IANARS, but naïvely this makes some intuitive sense to me—any trajectory that would intersect the Earth/planet/whatever would do so less than halfway around, right? But I didn't see any followup discussion, and I was wondering if that is really the case. Thanks for any elucidation!If it reenters naturally after 3/4 of circumference, then it's suborbital. If it has to use engines to return (slow down), then it's orbital.Let me restate my question. My understanding and paraphrasing of the claim is: If a body in free fall travels more than halfway around the globe without impacting, it will always make it all the way around (ignoring drag, etc.). My question is, is that a true statement?
Quote from: mark_m on 06/04/2021 02:38 pmMy searching has failed me, but back during the discussion of "orbital" vs. "3/4 of the way around the Earth" someone made a statement that anything that goes more than halfway around the globe has to be "orbital". (I'm assuming this claim is only talking about a ballistic segment of the flight.)IANARS, but naïvely this makes some intuitive sense to me—any trajectory that would intersect the Earth/planet/whatever would do so less than halfway around, right? But I didn't see any followup discussion, and I was wondering if that is really the case. Thanks for any elucidation!If it reenters naturally after 3/4 of circumference, then it's suborbital. If it has to use engines to return (slow down), then it's orbital.
My searching has failed me, but back during the discussion of "orbital" vs. "3/4 of the way around the Earth" someone made a statement that anything that goes more than halfway around the globe has to be "orbital". (I'm assuming this claim is only talking about a ballistic segment of the flight.)IANARS, but naïvely this makes some intuitive sense to me—any trajectory that would intersect the Earth/planet/whatever would do so less than halfway around, right? But I didn't see any followup discussion, and I was wondering if that is really the case. Thanks for any elucidation!
It can go half way around, 3/4 around, 99.99999% around.
Quote from: OTV Booster on 06/05/2021 03:39 pmIt can go half way around, 3/4 around, 99.99999% around. Uh, actually, no. Look at the equation for an orbit: radius = p/(1 + ecc * cos(theta)) where radius is the distance from the center of the Earth, p is a constant (the semi-latus rectum of the orbit, but that's not important), ecc is the eccentricity, and theta is the angle between the cannon and the current position of the shell. At 180°, the shell is at its apex (the perigee). But because cos(-theta) = cos(theta), the orbit is symmetrical. (As if I needed to prove that.) :-) As a result, if it does not touch the ground in the first 180°, it will not touch the ground at all until it reaches the launch point.
But because cos(-theta) = cos(theta), the orbit is symmetrical. (As if I needed to prove that.) :-) As a result, if it does not touch the ground in the first 180°, it will not touch the ground at all until it reaches the launch point.
Quote from: Greg Hullender on 06/05/2021 04:02 pmBut because cos(-theta) = cos(theta), the orbit is symmetrical. (As if I needed to prove that.) :-) As a result, if it does not touch the ground in the first 180°, it will not touch the ground at all until it reaches the launch point.Exactly, because orbit is symmetrical, if it touches the ground at some theta between 90-180°, then it must have travelled another theta above ground BEFORE the point of the cannon. So the angular distance between these two intersections with ground is 2theta, a value greater than 180°
In a Culture way I thought they might want to give themselves names and this is literally what happened on the first try:
Quote from: soyuzu on 06/05/2021 05:56 pmQuote from: Greg Hullender on 06/05/2021 04:02 pmBut because cos(-theta) = cos(theta), the orbit is symmetrical. (As if I needed to prove that.) :-) As a result, if it does not touch the ground in the first 180°, it will not touch the ground at all until it reaches the launch point.Exactly, because orbit is symmetrical, if it touches the ground at some theta between 90-180°, then it must have travelled another theta above ground BEFORE the point of the cannon. So the angular distance between these two intersections with ground is 2theta, a value greater than 180°There used to be a clear distinction between orbital & suborbital , a wide gulf between the two. A space launch vehicle was one or the other. But now SpaceX have, as they have with other industry terms like "flight proven", thrown themselves directly into the grey area and forced us to probe concepts that never had a clear boundary. This is what has lead us to strained definitions involving spherical cows in a vacuum.I suspect this whole discussion is just a sign that we're all bored because not a lot is happening at the moment.