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Abstract

We analyze the behavior of electromagnetic fields inside a resonant cavity by solving Einstein–

Maxwell field equations. It is shown that the modified geometry of space-time inside the cavity

due to a propagating mode can affect the propagation of a laser beam. It is seen that components

of laser light with a shifted frequency appear originating from the coupling between the laser field

and the mode cavity due to gravity. The analysis is extended to the case of an asymmetric resonant

cavity taken to be a truncated cone. It is shown that a proper choice of the geometrical parameters

of the cavity and dielectric can make the gravitational effects significant for an interferometric

setup. This could make possible to realize table-top experiments involving gravitational effects.

∗ http://marcofrasca.wordpress.com
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I. INTRODUCTION

A single plane wave always induces a deformation of the geometry of the space-time [1].

This effect is so small and plane waves such idealized objects that hopes to observe it are

certainly very tiny. Anyway, electromagnetic fields are easily available and the technology is

old and it is not impossible to realize devices where the intensity of such fields could make

this gravitational effect observable. This entails a rather sensible interferometer but it is

not impossible to realize. The devices that better fit the aim are resonant cavities where,

due to large merit factors, gross intensity of the electromagnetic energy can be achieved.

The observation of such an effect would mean a real breakthrough in experimental general

relativity as, so far, only large scale measurements were considered possible and available

so far. A table-top experiment would completely change our way to perform test of general

relativity in laboratory.

In order to approach this kind of physical problems we have to manage Einstein-Maxwell

equations [1]. This is generally a rather involved task but the smallness of the effects we are

going to study makes possible the application of perturbation techniques.

In this paper I show as a resonant cavity, with a single mode excited inside, could provide

a satisfactory set-up for a measurement of the deviation of the geometry of the space-time

from the flat case. In this case we have a laser beam traversing the resonant cavity. The

effect of the gravitational field is to couple it with the modes inside the resonant cavity

providing satellite frequencies, with respect to the laser frequency, that should be observed

in the output. This could explain recent measurements done at NASA Eagleworks. It should

be considered just the starting point for a more extended treatment to such an experimental

set-up, much on the same lines of Ref.[2]. In the latter paper a modified Einstein-Maxwell

theory involving scalar fields was considered but, with proper adjustments, but our aim

is just to evaluate the effects at work through Einstein-Maxwell equations without further

modification. In this way one can gets an estimation of the orders of magnitude involved.

Then, I analyze the case of a cavity having the form of a truncated cone. I show that,

with a proper choice of the geometrical parameters of the cavity and dielectric, gravitational

effects could be enhanced. We are able to evaluate the reaction of the gravitational field,

a thrust computed in this particular geometry, and it is shown that such a cavity is best

suited for enhancing such an effect due to the interplay of electromagnetic field, space-time

2



geometry and geometry of the resonant cavity.

The paper is so structured. In Sec. II we introduce the Einstein-Maxwell equations. In

Sec. III we analyze the case of a plane wave applied to a resonant cavity in a form of a

box. We assume then that an interferometric experiment is performed making a laser beam

pass through the cavity. In Sec IV we consider a more general cavity having the form of a

truncated cone. We assume the approximation that the major radius is taken much greater

than the minor radius while the latter is taken going to zero. This geometry proves to be

favorable to the emergence of gravitational effects at observational level, even if really small.

In Sec. V conclusions are presented.

II. EINSTEIN-MAXWELL EQUATIONS

The set of Einstein-Maxwell equations is yielded by

Rµν − 1

2
gµνR = κT µν (1)

being κ = 8πG/c4 with G the Newton constant and c the speed of light, gµν the metric

tensor and Rµν the Ricci tensor with R = Rµ
µ. The energy-momentum tensor is given by

Tαβ =
1

µ0

(
FαψFψ

β − 1

4
gαβFψτF

ψτ

)
(2)

being the electromagnetic field tensor

F αβ = Aα;β − Aβ;α = Aα,β − Aβ,α (3)

where Aα is the vector potential, ; implies covariant derivative and , is ordinary partial

derivative. F αβ must satisfy the Maxwell equations

Fαβ
;ρ = 0 (4)

without sources. It is also

Fαβ
;δ + F δα

;β + F βδ
;α = 0 (5)

that completes the full set of Maxwell equations. These equations can be recast into the

exact form [3]

−1

2
�hµν = κ(T µν + τµνLL) (6)
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being

hµν = gµν − ηµν (7)

and τµνLL the Landu-Lifshitz tensor [3–5]. We note that hµν and ηµν are not real tensors

and we agree to raise or lower indexes of hµν by ηµν , the flat metric. Given the tensor

h
µν

= hµν − ηµνh with h = ηµνh
µν , we choose the Donder gauge h

µ

ν,µ = 0. This is the form

we use in this article to perform perturbation theory. This is the standard setup for weak

field approximation that is also the case we are interested in.

III. PLANE WAVE GEOMETRY

A. Geometry

The simplest case discussed in literature for the Einstein-Maxwell equations is that of a

plane wave [1]. I take the metric in the form

ds2 = L2(v)(dx2 + dy2)− dvdu (8)

given the Rosen coordinates v = ct − z and u = ct + z. It is easy to show that an electro-

magnetic plane wave modifies the geometry of space-time. I have that the Einstein tensor

reduces to the Ricci tensor as the trace of the energy-momentum tensor is zero in this case.

I will have the only non-null component

R33 = −2
L′′(v)

L(v)
. (9)

The electromagnetic field tensor will have the non-null components

F01 = −F31 = A′(v). (10)

So, the only nonzero component of the energy-momentum tensor is

T33 = − 1

µ0

(A′(v))2

L2(v)
(11)

and so I have to solve the equation

2
L′′(v)

L(v)
= −8πG

c4µ0

(A′(v))2

L2(v)
(12)
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That has the solution L(v) = ±αA′(v) provided

α2 =
4πG

c2ω2µ0

(13)

and I am left with the equation for a plane wave

[A′(v)]′′ +
ω2

c2
A′(v) = 0 (14)

for the electromagnetic field and taking A′(0) = E0/c the magnetic field amplitude. Note

that α ≈ 9 · 10−21 A ·m · N−1 = 9 · 10−21 T−1 for ω = 1 GHz. This is a small number as

expected and this effect is negligible small for all practical purposes. Its inverse identify a

critical magnetic field for which this effect could be meaningful but has an unphysical large

value. Though it can be seen that, by a proper choice of the parameters entering into the

definition of α, this effect could nbe made visible with an interferometric technique.

In a resonant cavity, an estimation of the amplitude of the electric field E0 can be com-

puted using the formula [2]
ϵ0
4
E2

0L
3 =

Q · P
ω

(15)

being Q the merit factor, P the input power and V the volume of the cavity assumed to be

a box of side length L. In this case I have to apply the boundary condition

A′(0) = A′(L). (16)

This yields the modes to be kn = 2nπ/L, being n an integer, and the corresponding fre-

quencies ωn = ckn arising from the Rosen coordinate v = ct− z.

B. Light propagation

We assume that a beam of light is moving through the box containing one of the modes

described above as the cavity is fed through some source of power P . There is no elec-

tromagnetic interaction between these two electromagnetic fields because light has not self-

interaction besides a small effect, dubbed Delbrück scattering, that can be analyzed in

quantum electrodynamics and is fourth order. This does not apply here. The propagation

of the beam inside the cavity is described by the wave equation

L2(v)

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
− 4

∂2ψ

∂u∂v
= 0 (17)
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and one sees that the altered geometry by the mode of the cavity can couple it with the

laser beam. This equation can be solved by separation of variables setting

ψ(x, y, u, v) = E(x, y)ϕ(u, v) (18)

being E(x, y) an envelope of the beam. This yields the equation for ϕ(u, v)

−4
∂2ϕ

∂u∂v
= k2L2(v)ϕ (19)

that is
1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂z2
= k2L2(ct− z)ϕ. (20)

One can consider L(ct− z) a small quantity and do some perturbation theory yielding

ϕ(z, t) ≈ ϕ0(z, t) +
ck2

2

∫
dz′dt′θ(c(t− t′)− (z − z′))L2(ct′ − z′)ϕ0(z

′, t′) (21)

being θ(z) the Heaviside step function and ϕ0(z, t) the laser beam entering the cavity. Finally,

one has

ψ(x, y, z, t) ≈ ψ0(x, y, z, t)+
ck2

2

∫
dz′dt′θ(c(t− t′)− (z− z′))L2(ct′− z′)ψ0(x, y, z

′, t′). (22)

One sees that there is an additional component to the laser field exiting the cavity that

interacts with the mode inside. This can have terms with the frequency shifted and is a

purely gravitational effect. In order to see this just note that

L2(ct− z) = α2E
2
0

2c2
(
2 + eiω(t−z/c) + e−iω(t−z/c)

)
(23)

and, for the laser field,

ψ0(x, y, z, t) = A(x, y, z)eiωLt + A∗(x, y, z)e−iωLt. (24)

Putting this into eq.(22) one sees that the additional components contribute as

ψ(x, y, z, t) ≈ ψ0(x, y, z, t)+k
2α2E

2
0

4c

(
A1(x, y, z)e

iωLt + A2(x, y, z)e
i(ω−ωL)t + A3(x, y, z)e

i(ω+ωL)t + c.c.
)
.

(25)

One should observe satellite lines due to the modified geometry of space-time originating

from the field inside the cavity. Note also the dependence on k that for a laser can be

very large and one gets an overall noticeable effect. This result is important as it shows

how, in a small setup and with a proper interferometric device, one could detect very small
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gravitational effects arising from the effect of an electromagnetic field in a localized region

of space-time. It is interesting to note that a dielectric properly inserted into the cavity can

enhance this effect significantly changing ϵ0 into ϵ = ϵ0ϵr. For some polymers ϵr can be of

the order of 105 [6] or also higher for some ceramic material [7].

IV. GEOMETRY OF RESONANT CAVITIES AND SPACE-TIME EFFECTS

We assume now a geometry with a rotational symmetry along the z axis. The geometrical

form of the resonant cavity is asymmetrical with respect to two parallel planes being a

truncated cone.

A. Modes

If the resonant cavity has the form of a truncated cone, the modes inside take the form

[2]

B = −U0R (r)S ′ (θ) cos (ωt) eφ, (26)

E/c = U0

{
R (r)

r
n (n+ 1)S (θ) er

+

[
R (r)

r
+R′ (r)

]
S ′ (θ) eθ

}
sin (ωt) (27)

where U0 is a global constant dependent on the source supplying the cavity and the charac-

teristics of the cavity itself. The functions R and S are defined as

S (θ) = Pn (cos θ) ,

R (r) = R+ (r) cosα +R− (r) sinα,

R± (r) =
J±(n+1/2) (kr)√

kr
,

where Pn is the Legendre polynomial of order n, Jm the Bessel function of the first kind of

order m, and α and k constants to be determined along with the order n. By boundary

conditions, the order n of the Legendre polynomial must satisfy

Pn (cos θ0) = 0, (28)

being θ0 the semi-angle of the cone, the wavenumber k the condition[
R+

r
+R′

+

]
r2

[
R−

r
+R′

−

]
r1

=

[
R+

r
+R′

+

]
r1

[
R−

r
+R′

−

]
r2

, (29)
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and α

tanα = −
R+ (r2) /r2 +R′

+ (r2)

R− (r2) /r2 +R′
− (r2)

. (30)

The resonant mode angular frequency is thus determined as ω = kc. From this we can

compute the non-zero components of the energy-momentum tensor of the electromagnetic

field. We get

F10 = −F01 = U0
R (r)

r
n (n+ 1)S (θ) sin (ωt)

F20 = −F02 =

[
R (r)

r
+R′ (r)

]
S ′ (θ) sin (ωt)

F32 = −F23 = −U0kR (r)S ′ (θ) cos (ωt) (31)

The constant U0 can be obtained using the formula [2]∫
⟨B2⟩ dV
µ0

=
U2
0

2µ0

∫
[R (r)S ′ (θ)]

2
dV =

QP

ω
, (32)

being Q the quality factor of the cavity, P the input power and a time average is applied.

B. Solution of Einstein-Maxwell equations in wave-like form

It is not difficult to realize that the quantity

κ =
8πG

c4
≈ 2.0765 · 10−43N−1 (33)

is small and so we have to eventually apply the linearized theory. The equations in the

Donder gauge are [3]

−1

2
�hµν = κ(Tµν + τµν) (34)

being τµν the gravity stress-energy tensor and

hµν ≡ hµν −
1

2
hηµν . (35)

We have set at the start

gµν = ηµν + hµν (36)

being ηµν the flat metric and hµν the gravity field. This is not a tensor but it is not a concern

here. We work out the analysis as given in [5]. We get the general solution

hµν(x, t) = −2κ

∫
V

d3x′
(Tµν + τµν)

(
x′, t− x−x′

c

)
|x− x′|

(37)
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being τµν the Landau-Lifshitz pseudotensor of the gravity field. We introduce the constant

l−2
0 = 2κ

U2
0

µ0

≈ 3.3 · 10−37U2
0 (38)

with U2
0 given in T 2 and being the definition of a length. This means that

hµν(x, t) = −l−2
0

∫
V

d3x′
(T µν + µ0U

−2
0 τµν)

(
x′, t− x−x′

c

)
|x− x′|

(39)

being T µν the dimensionless energy-momentum tensor of the electromagnetic field inside the

cavity. We can remove l0 by changing the length scale in the integral and obtain

hµν(x, t) = −
∫
V

d3x′
(T µν + 2κτµν)

(
x′, t− x−x′

c

)
|x− x′|

(40)

having set x = x/l0 and t = t/(l0/c). τµν is the normalized gravity pseudotensor. This has

a prefactor (2κ)−1. l0 is really large unless we are in the field of a magnetar. Then, the

integral is easy to evaluate to give

hµν(x, t) = −L(x)
(
T µν + 2κτµν

) (
x, t

)
(41)

being

L(x) =

∫
V

d3x′
1

|x− x′|
(42)

a geometrical factor obtained by integrating on the volume of the frustum. Eq.(41) would

be a differential equation for hµν but, in a first approximation, we can assume that the

derivatives of it are negligible and we are left with the result

hµν(x, t) = −L(x)T µν
(
x, t

)
. (43)

This is our key result and can be stated in the same way as inductance enters into electro-

magnetic field.

C. Gravitational susceptibility

The susceptibility of the frustum can be evaluated by computing the integral, in cylin-

drical coordinates,

L(r, z, θ) =

∫ h

0

dz′
∫ 2π

0

dθ′
∫ r2−r1

h
z′+r2

0

r′dr′
1√

r2 + r′2 + (z − z′)2 − 2rr′ cos(θ − θ′)
(44)
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that is rather involved. A way out is to note that

∆2
1

|x− x′|
= δ3(x− x′) (45)

and so

∆2L(x) = 1. (46)

The solution of this equation is

L(x) = Lo(x) + a+ b ln(r) +
r2

4
(47)

being Lo(x) a solution of the equation ∆2Lo(x) = 0, we assume it to be zero, and we have

to set the condition for the frustum

r(z) =
r2 − r1
h

z +
r1
l0
. (48)

This yields

a = ln−1 r2
r1

(
1

4

r22
l20

ln
r1
l0

− 1

4

r21
l20

ln
r2
l0

)
b = ln−1 r2

r1

(
1

4

r21
l20

− 1

4

r22
l20

)
. (49)

These equations appear rather interesting as, by a proper choice of parameters, one can

make a gravitational effect more or less relevant in the physics of the problem. The case of

interest is that implying the minor radius r1 going to 0 and the major radius r2 increasing

to infinity approaching a cone. In this case the geometry can help to alleviate the smallness

of the ratio G/c4 turning this into an observable effect.

D. Gravitational reaction

In order to evaluate the contribution of the gravitational field to momentum one has to

evaluate the approximate Landau-Lifshitz tensor [4]

ταβLL =
c4

16πG
⟨hν,αµ hµ,βν ⟩ (50)

where the average ⟨· · ·⟩ is intended on time and on the cos θ. The comma means ordinary

derivative ∂α. In order to evaluate this correction we observe that, for the tensor F µν is

F 01 = −F 10 = Er, F 02 = −F 20 = Eθ,

F 23 = −F 32 = Bϕ (51)
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and all other components are zero. So, in vacuum,

T 00 =
1

2

(
ϵ0E

2
r + ϵ0E

2
θ +

B2
ϕ

µ0

)
, T 01 = T 10 =

EθBϕ

µ0

, T 02 = T 20 = −ErBϕ

µ0

,

T 11 =
1

2
ϵ0E

2
r −

1

2

(
ϵ0E

2
θ +

B2
ϕ

µ0

)
, T 22 =

1

2
ϵ0E

2
θ −

1

2

(
ϵ0E

2
r +

B2
ϕ

µ0

)
,

T 33 =
1

2

B2
ϕ

µ0

− 1

2

(
ϵ0E

2
r + ϵ0E

2
θ

)
, T 12 = T 21 = ϵ0ErEθ. (52)

In a first approximation it is

hν,αµ ≈ L,αηνδTµδ (53)

then

ταβLL ≈ c4

16πG
⟨L,αL,βηνδηγµTµδTγν⟩. (54)

Now, we observe that r in L depends on z through the equation of the truncated cone (48)

and so, the only term that survives of this is

τ zzLL ≈ c4

16πG
⟨L,z(r(z))L,z(r(z))ηνδηγµTµδTγν⟩. (55)

It is important to observe that now we have the square of the energy-momentum tensor

and so the average in time is different from zero granting the presence of a force along z

axis. All the components of the electromagnetic field inside the frustum concur to the force

along z. We assume the energy-momentum tensor normalized in unit of U0. Then, the force

has an overall factor of U4
0 against the really tiny contribution of the G/c4 factor of the

gravitational field. In this way we can evaluate the force on the walls along z axis as

Fz1 = πr21
1

2 cos θ0

∫ cos θ0

− cos θ0

d cos θτ zzLL =
1

2 cos θ0

∫ cos θ0

− cos θ0

d cos θ
c4

16πG
⟨hν,zµ hµ,zν ⟩ =

c4

16πG

1

2 cos θ0

∫ cos θ0

− cos θ0

d cos θ

[
L′(r)

dr

dz

]2∣∣∣∣∣
r=r1

⟨T νµT
µ

ν ⟩ (56)

and

Fz2 = πr22
c4

16πG

1

2

∫ cos θ0

− cos θ0

d cos θ

[
L′(r)

dr

dz

]2∣∣∣∣∣
r=r2

⟨T νµT
µ

ν ⟩ (57)

being h the height of the frustum. The resulting thrust is given by T = Fz2 − Fz1 . We note

that dSk = πr2kd cos θ with k = 1, 2 for the two opposite faces of the frustum. Here θ runs

from −θ0 to θ0 assuming 2θ0 the full opening angle of the frustum. One has,

Fzk = πr2k
c4

16πG

[(
b

rk
+
rk
2l20

)
r2 − r1
h

]2
1

2 cos θ0

∫ cos θ0

− cos θ0

d cos θ ×

1

T

∫ T

0

dtT
ν

µ

(√
r2k + h2δk,2, θ, t

)
T
µ

ν

(√
r2k + h2δk,2, θ, t

)
. (58)
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In our case it is

T
ν

µT
µ

ν = (T
0

0)
2 + (T

1

1)
2 + (T

2

2)
2 + (T

3

3)
2 + 2(T

1

0)
2 + 2(T

2

0)
2 + 2(T

2

1)
2 (59)

and the only integrals to be evaluated in time are

1

T

∫ T

0

dt sin2 ωt cos2 ωt =
1

8

1

T

∫ T

0

dt sin4 ωt =
1

T

∫ T

0

dt cos4 ωt =
3

8
(60)

that are not zero. There is a net thrust. Now, let us evaluate the order of magnitude of it.

In order to do this we assume that each single term gives a similar contribution to to sum

and we content ourselves with the integral

Tk =
1

2 cos θ0

∫ cos θ0

− cos θ0

d cos θ⟨(T 0

0)
2

(√
r2k + h2δk,2, θ, t

)
⟩ (61)

that yields

Tk =
1

2 cos θ0

∫ cos θ0

− cos θ0

d cos θ
1

4

(
3

8
E

4

r +
3

8
E

4

θ +
3

8
B

4

ϕ +
3

4
E

2

rE
2

θ +
1

4
E

2

rB
2

ϕ +
1

4
E

2

θB
2

ϕ

)
. (62)

Overall we get a numerical factor depending on θ0, r1 or r2 and h. So, finally

Fzk =
c4

16G

[(
b

rk
+
rk
2l20

)
r2 − r1
h

]2
Gk(rk, hδk,2, θ0) (63)

being Gk(rk, hδk,2, θ0) is a purely geometrical factor arising from the distribution of the

electromagnetic field inside the cavity.

E. Estimation of the force

The numbers involved in this kind of computation, as usual for gravity at this level, are

really small. So, we need to understand what is the better geometrical form to choose to

get an effect at least amenable to observation in current laboratory experiments. We see

that in eq.(63) enters a multiplicative constant and two factors crucially depending on the

geometry of the resonant cavity. Let us evaluate each one of these. We define

L1(r) =
c4

16G

[(
b

r
+

r

2l20

)
r2 − r1
h

]2
. (64)
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It is easy to see that L1(r) → 0 as r1 → r2 and so, we have to exclude a cylindrical geometry.

On the other side, when r2 ≫ r1 we get

L1(r) ≈
π2G

c4
r62

r2h2 ln2
(
r2
r1

) U4
0

µ2
0

(65)

and this geometrical factor can compensate largely the ratio G/c4 producing an overall

macroscopic effect. Also note that, from eq.(32),

U2
0

2µ0

C(k · r1, k · r2, θ0) =
QPk2

c
(66)

and then U4
0/µ

2
0 ∝ Q2P 2k4/c2 so, higher are Q of cavity and the input power and higher is

the force observed. This can also be rewritten as

c2ϵ0
U2
0

2
C(k · r1, k · r2, θ0) =

QPk2

c
(67)

where use has been made of the formula c2 = 1/ϵ0µ0. The dependence on materials enters

here changing ϵ0 → ϵrϵ0 and µ0 → µrµ0.

Turning the attention to the contribution Gk, we note that there is a numerical factor due

to the average of the fourth power of the given Legendre polynomial or its derivative. This

is just a numerical factor, to be evaluated case by case, that depends on θ0. Then terms

that contribute are

E
4

r(rn, θ0) =
R4 (k · rn)
k4 · r4n

n4 (n+ 1)4 ⟨[S (θ)]4⟩θ0

E
4

θ(rn, θ0) =

[
R (k · rn)
k · rn

+R′ (k · rn)
]4

⟨[S ′ (θ)]
4⟩θ0

B
4

ϕ(rn, θ0) = R4 (k · rn) ⟨[S ′ (θ)]
4⟩θ0

E
2

r(rn, θ0)B
2

ϕ(rn, θ0) =
R2 (k · rn)
k2 · r2n

n2 (n+ 1)2R2 (k · rn) ⟨[S (θ)]2 [S ′ (θ)]
2⟩θ0

E
2

θ(rn, θ0)B
2

ϕ(rn, θ0) =

[
R (k · rn)
k · rn

+R′ (k · rn)
]2
R2 (k · rn) ⟨[S ′ (θ)]

4⟩θ0 (68)

with n = 1, 2 and we gave explicitly the dependence on k. We note that, for k · r2 ≫ 1,

the only relevant component is the fourth power of the magnetic field. So, one has the final

formula

Gk(rk, hδk,2, θ0) ≈ R4 (k · rn) ⟨[S ′ (θ)]
4⟩θ0 . (69)

Finally, we can get the direction of the thrust on the cavity. We get

T = Fz2 − Fz1 =
π2G

c4
r62

h2 ln2
(
r2
r1

) U4
0

µ2
0

Gk(
√
r22 + h2, h, θ0)−

π2G

c4
r62

h2 ln2
(
r2
r1

) U4
0

µ2
0

Gk(r1, 0, θ0),

(70)
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provided r2 ≫ r1 and r1 small enough. This can also be written, using the formula c2 =

1/ϵ0µ0, as

T = Fz2 − Fz1 = π2Gϵ20U
4
0

r62

h2 ln2
(
r2
r1

) [
Gk(

√
r22 + h2, h, θ0)− Gk(r1, 0, θ0)

]
. (71)

This is our final result that shows how the interplay between electromagnetic field, space-

time geometry and geometry of a resonant cavity can yield a finite thrust to the cavity itself

without violating any law of physics. When a dielectric is inserted into the cavity, the above

formula should change with ϵ0 → ϵ and U0 should change accordingly for µ. One has

U2
0

2
C(k · r1, k · r2, θ0) = µ0µr

√
ϵrµr

QPk2

c
(72)

This effect appears to be really small. If we assume a cavity with r1 = 0.025m, r2 = 0.1m

and h = 0.1 m, for a mode having N = 42.272946, k = 701.897366 m−1, α = 0 and

ν = 210.423537 GHz the given thrust is T = 5.945503835 ·10−22 N , if we assume a dielectric

with µr ≈ 1 and ϵr ≈ 105 (e.g. a conjugated polymer [6, 7]) is inserted into the cavity. For

this effect the scale is set by the constant

T0 = π2Gϵ2U4
0 r

4
2 ≈ 5 · 10−32ϵ2rU

4
0 r

4
2 N. (73)

Such an effect could be evidenced with interferometric techniques by shooting a laser beam

inside the cavity in a Mach-Zender interferometer at small input powers.

V. CONCLUSIONS

I have shown how a plane wave could produce a gravitational effect inside a cavity that

could be observed using a propagating laser beam inside it. The effect could be unveiled

using an interferometer or observing the components of the laser field outside the cavity.

Components with a shifted frequency, due to the modes inside the cavity, should be seen.

This could explain some recent results with interferometric setup obtained at NASA with a

resonator having the form of a box. A local warp of the geometry due to the electromag-

netic field pumped inside the cavity could be a satisfactory explanation. From a physical

standpoint this could be a really breakthrough paving the way to table-top experiments in

general relativity and marking the starting point of space-time engineering.

14



Then, I considered a frustum in the form of a truncated cone. I have shown that general

relativity introduce a large scale that makes all the effects really miniscule. For the frustum

I have shown that the gravitational effects can be described by a susceptibility multiplying

the energy-momentum tensor of the electromagnetic field inside the cavity. Due to this

particular geometry, it can be shown that the susceptibility can be made significant by a

proper choice of the geometrical parameters of the cavity yielding thrust without violating

any law of physics. This effect could amenable to observation with a proper interferometric

setup.
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