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Abstract: We analyze the electromagnetic spatital distributions and address 
an important issue of the transmission properties of spherical transverse-
electric (TE) and transverse-magnetic (TM) eigenmodes within a tapered 
hollow metallic waveguide in detail. Explicit analytical expressions for the 
spatital distributions of electromagnetic field components, attenuation 
constant, phase constant and wave impedance are derived. Accurate 
eigenvalues obtained numerically are used to study the dependences of the 
transmission properties on the taper angle, the mode as well as the length of 
the waveguide. It is shown that all modes run continuously from a 
propagating through a transition to an evanescent region and the value of the 
attenuation increases as the distance from the cone vertex and the cone 
angle decrease. A strict distinction between pure propagating and pure 
evanescent modes cannot be achieved. One mode after the other reaches 
cutoff in the tapered hollow metallic waveguide as the distance from the 
cone vertex desreases. 
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1. Introduction 

The advent of high–purity ultra-low-loss silica fiber as a transmission medium in the late 
1970s provided a basis for the modern optical communication infrastructure. Although highly 
successful, silica waveguides have fundamental limitations in the their attenuation and 
nonlinearities that result from the interaction of light with a dense, material-filled core. A 
different approach to waveguiding circumvents these problems by confining light in a hollow 
core using highly reflective walls. This approach is exemplified by hollow waveguides with 
perfectly conducting metallic wall [1] and omnidirectional reflector claddings [2, 3]. Prior to 
the emergence of sillica fiber, the hollow conical waveguides (horns) have got successful 
applications in many fields such as millimeter-wave communication, microwave radio-relay 
links, and satellite communication [4, 5]. They have been mainly used as a simple and 
compact antenna structure. In recent years, hollow metallic waveguides with a conical taper 
have been investigated in view of their applicability as couplers. These waveguides find some 
important applications in optical communication, scanning near-field optical microscopy, and 
laser-wakefield accelerators [6-9]. A theroretical treatment of a tapered optical waveguide 
presents formidable mathematical difficulties. One can not but , therefore, have recourse to 
approximate methods. A typical approach is to assume the tapered hollow metallic 
waveguides as a stack of a large number of optical waveguides of increasing cross-sectional 
size arranged end to end [10]. However, the actual electromagnetic fields configurations, their 
transmission characteristics, as welll as impedance and fields intensities distributions have not 
been thoroughly investigated. 

In the present paper, we report the results of a theoretical investigation of a tapered hollow 
metallic waveguide from a exact analytical approach. Some numerical solutions based on a 
discretization are used to overcome the difficulties involed in finding the accurate eigenvalues 
of this boundary value problem and the evaluation of the associated eigenfunctions. A detailed 
study of the electromagnetic fields configurations, their transmission characteristics, as well as 
impedance and fields intensities distributions inside a conical hollow metallic waveguides is 
facilitated by accurate computation of eigenvalues. Explicit expressions for the field 
components, attenuation constant, phase constant, wave impedance and field intensity are 
obtained for the spherical TE and TM modes in a perfectly conducting conical hollow 
waveguide. 

2. Spatital distributions of electromagnetic fields for the spherical TE and TM modes 

Here we discuss the behaviour of electromagnetic fields inside a truncated cone of circular 
cross-sectional shape with perfectly conducting metallic walls and with a loss-free air core. A 
meridional and a transverse section of such a waveguide can be seen in Figs. 1(a) and 1(b). 
Throughout this paper we consider time-harmonic dependence of the fields. Further, we omit 
the factor exp( )i tω−  from all expressions. In spherical coordinates ( , , )r θ ϕ  the basic 

equation for the Hertz function ( , , )U r θ ϕ  of electromagnetic fields in conical waveguide can 
be written as [11] 

                                   
2 2

2
2 2 2 2

1 1 1
sin 0

sin sin

U U U
k U

r r
θ

θ θ θ θ ϕ
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞+ + + =⎢ ⎥⎜ ⎟∂ ∂∂ ∂⎝ ⎠⎣ ⎦

.                   (1) 

Here r  is the distance from the cone vertex, θ  and ϕ  are polar and azimuthal angles, 

respectively.  2k vπ λ ω= =  is wave number ( ω  and v  are the frequency and the velocity 
of light respectively, and λ  denotes its wavelength in air).  
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Fig. 1. Schematic illustrating a conical hollow metallic waveguide. (a) Meridional section of 
hollow metallic waveguide with a taper. The apex of the cone coincides with the origin of the 
spherical coordinate system. 02θ  is the cone angle, 0z  is the longitudinal coordinate at the 

waveguide exit, 02R  is the aperture diameter in the exit plane, inr  and 0cosin inz r θ=  are the 

radial and longitudinal coordinates at the waveguide entrance, respectively. (b) Transverse 
section of hollow metallic waveguide with a taper. R  presents transverse section radius and 

0sinR r θ= . 

If the apex of the cone coincides with the origin of the spherical coordinate system and 
polar axis is the longitudial axis of symmetry of the cone, then conical surface will coincide 
with surface of constant colatitude as shown in Fig. 1(a). The field components of the 
permissible TE modes to r  can be expressed in terms of the Hertz function U  by means of 
the following relations [11]: 
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Note that , ,rE E Eθ ϕ  and , ,rH H Hθ ϕ  denote the components of the electric E and magnetic H 

fields associated with the corresponding spherical coordinates , ,r θ ϕ . Where 
(1)( ) ( )lR r kr h kr= ⋅ , (1) ( )lh kr  is the spherical Bessel function of the third kind with a 

noninteger index l , corresponding to the inward-traveling wave, and (cos )m
lP θ  is the 

associated Legendre function of order l  and degree m . The azimuthal symmetry sets m  as 
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an integer. l  is determined by the bounary condition 0× =n E  which yields 0( ) 0Eϕ θ =  for 

the tangential component of the electric field E on the boundary between a hollow core and a 
perfectly conducting metallic surface of a cone. With the help of Eq. (2), the boundary 
condition for TE waves can be rewritten in terms of the associated Legendre function 

                     
0

(cos ) 0m
l

d
P

d θ θ

θ
θ =

⎡ ⎤ =⎣ ⎦ .                                                            (4) 

For TM modes to r , one can use the above notation for the Hertz function U , where U  
obeys the Eq. (1). In this case the field components inside conical waveguides can be written 
as [11] 
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Where the bounary condition 0× =n E  yields 0( ) 0Eϕ θ =  and 0( ) 0rE θ =  for the tangential 

component of the electric field E at an interface. With the help of Eq. (5), the boundary 
condition for TM waves can be rewritten in terms of the associated Legendre function 

                                 
0

(cos ) 0m
lP

θ θ
θ

=
= .                                                        (7) 

The Eq. (4) yields a set of eigenvalues mnl  associated with the mnTE  field modes. For a given 
azimuthal number m  ( 0,1, 2,...m = ), the index n  ( 1, 2,3,...n = ) denotes the corresponding 
root of Eq. (4). Similarly, each choice of a pair ( ,m n ) in Eq. (7) determined a possible mnTM  

field mode. The eigenvalues mnl  of Eqs. (4) and (7) depend upon the cone half-angle 0θ , such 

that mnl  increases as the magnitude of 0θ  decreases. In the table 1 we give the values of mnl  

for the first 5 lowest-order modes ( 11 01 21 11 01, , , ,TE TM TE TM TE ) determined by Eqs. (4) and 
(7).  
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Table 1. The eigenvalues mnl  for the 11 01 21 11 01, , , ,TE TM TE TM TE  modes as functions of the cone half-angle 0θ . 

0θ  24π  12π  6π  4π  3π  2π  

0

11

( )mnl

TE

θ  13.5914 6.5817 3.1204 2.0000 1.4684 1.0000 

0

01

( )mnl

TM

θ  18.0217 8.6743 4.0932 2.5481 1.8361 1.0000 

0

21

( )m nl

TE

θ  22.8573 11.2857 5.6046 3.6567 2.7917 2.0000 

0

11

( )mnl

TM

θ  28.7754 14.1437 6.8335 4.4011 3.2012 2.0000 

0

01

( )mnl

TE

θ  28.7754 14.1437 6.8335 4.4011 3.2012 2.0000 

3. Transmission characteristics of the spherical TE and TM modes inside conical 
hollow metallic waveguide 

The transmission properties of the guide modes are governed by a number of physical 
quantities. The important parameters are the attenuation and phase constants which are 
defined as the logarithmic rate of decrease of amplitude and phase, respectively, of a field 
component in the direction of propagation. More interesting, however, is the electric field 
component. For all electric field components of the spherical TE and TM modes mentioned 
previously, one can expressed them as 

                        ( , , ) ( , ) rjk rE r A eθ ϕ θ ϕ= ,                                                          (8) 

where E  represents ,rE Eθ  or Eϕ  for TE or TM modes, ( , )A θ ϕ  is real, and rk  is the 

propagation constant in the direction r  and complex. With the help of Eq. (8), we can obtain  
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.                                                          (9) 

Further, we introduce the following quantity: 
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Substituting this into Eqs. (8) and (9), we can obtain 

                   ( )( , , ) ( , ) ( , )j j r r j rE r A e A eβ α α βθ ϕ θ ϕ θ ϕ− + − −= = ,                          (11) 

where α  is defined as the attenuation and β  as the phase constant and α , β  are real. If 
0β < , we have inward-traveling waves which are attentuated or augmented according as α  

is positive or negative. 
For TE or TM modes inside the conical hollow metallic waveguide, and with the help of 

Eqs. (2), (5) and (10), one obtains 
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and 
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Where 1
2

(1)
lH +  is the first kind Hankel function of order 0.5l +  with the argument kr . 

1 1
2 2

(1) (1),l lH H+ +′ ′′  and 1
2

(1)
lH +′′′  are the first, the second and the third derivatives of the Hankel 

function with the argument kr , respectively. The Hankel function function 1
2

(1) ( )lH kr+  and its 

derivative can be expressed as complex quantities and the real and imaginary parts of 

, ( , )TE r lθ ϕγ , , ( , )TM r lθ ϕγ  and ( , )TM
r r lγ  give the attenuation and phase constants, respectively, for 

the TE to r  and TM to r  modes. 
Another parameter of particular interest associated with the mode transmission is the wave 

impedance, defined by [11] 
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With the help of Eqs. (2), (5), (15) and (16), one can obtain 
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where 
μ
εη =  is called the intrinstic impedance of the medium.  

4. The space variation of the attenuation and phase constants of the spherical TE and 
TM modes 

Based on the Eqs. (12), (13) and (14), a variation of the attenuation α  and phase constants β  

for the spherical TE and TM modes as a function of kr  with cone half-angle 0θ  as a 
parameter has been studied and the results are presented in Figs. 2-5.  
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Fig. 2. The attenuation constant ( α ) of Eθ  and           Fig. 3. The phase constant ( β ) of Eθ  and Eϕ for        
Eϕ for the TE and TM modes as a function of kr .                      the TE and TM modes as a function of kr .   
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Fig. 4. The attenuation constant ( α ) of rE                         Fig. 5. The phase constant ( β ) of rE  

for TM modes as a function of kr .                                     for the TM modes as a function of kr . 

Figures 2 and 3 show a variation of the attenuation α  and phase constants β  of Eθ  and 

Eϕ  for the first 5 lowest-order modes as a function of kr  with cone half-angle 0θ  as a 

parameter in the propagation direction, respectively. Figures 4 and 5 present α  and β  of rE  

for the 01TM  and 11TM  modes as a function of kr  with cone half-angle 0θ  as a parameter, 

respectively. As kr  desreases all modes run continuously from a propagating through a 
transition to an evanescent region. We note that a strict distinction between pure propagating 
and pure evanescent modes can not be achieved. The value of the attenuation α  increases and 
the phase constants β  changes from k≈ −  to 0  as  kr  desreases. 0β <  represents inward-
traveling wave and 0β >  represents outward-traveling wave which describes the reflection 
effect inside the conical hollow metallic waveguide. There is no well-defined cutoff 
wavelength but rather a cutoff radius ( cR ). All modes have a cutoff when 0β = . However, it 
is interesting to note that the magnitude of the cutoff radius is related to the wavelength and 
the cone half-angle. At about 10kr = , for example, the 11TE  reaches cutoff inside the tapered 

hollow waveguide with cone half-angle 0 24θ π= . By computation, we can obtain the cutoff 

radius 24(5 ) sin 0.2077cR πλ π λ= ⋅ ≈ . That is, the mode reaches cutoff at subwavelength-sized 
aperture. In the Figs 2-5, we observe the values of attenuation α  and phase constants β  

depend on the cone half-angle 0θ  very seriously. As 0θ  decreases, the value of the 
attenuation increases. The smaller the cone half-angle is, the faster  the modes attenuate. It is 
necessary to stress that our analysis is restrict to perfect metallic conductor only. While this 
approximation of real metallic walls with perfect electric conductors is applicable only for 
near infrared and lower frequencies, because metallic wavuguides become lossy at high 
frequencies due to the finite condutivity of metals. 

Figure 6 shows α  and β  for the first 5 lowest-order modes as a function of kr  with 

fixed cone half-angle 0 6θ π=  in the propagation direction. Note that a logarithmic scale is 
used in Fig. 6(a). In the propagating region the attentuation of some modes decays faster than 
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those of others. At 10kr = , for example, the 11TM  mode shows the lowest attenuation. The 
sequence of modes of the cylindrical hollow metal waveguide starts with 

11 01 21 11 01, , , ,TE TM TE TM TE , and the latter two modes 11TM  and 01TE  are degenerate. 
Whereas for the conical hollow metallic waveguide we can obtain sequence 

11 01 11 21 01, , , ,TM TM TE TE TE  beyond 7.5kr ≈ . The 11TM  and 01TE  modes are not  degenerate. 
From the Fig. 6(b), we observe that one mode after the other reaches cutoff in the tapered 
hollow metallic waveguide as kr  decreases. 

     
Fig. 6. Variation of the attenuation α  and phase constants β  for the first 5 lowest-order 
modes as a function of kr  with cone half-angle 0 6θ π=  as a parameter. 

5. Radial dependences of the wave impedance for the spherical TE and TM modes 

We shall consider below the main features in the behaviour of the wave impedance as a 
function of kr  for the spherical TE and TM modes inside the conical hollow metallic 
waveguide. Based on the Eqs. (17) and (18), a variation of the the wave impedance for 11TE  

and 01TM  modes as a function of kr  with cone half-angle 0θ  as a parameter has been studied 
and the results are presented in Fig. 7. By numerical simulations we find the magnitude of the 
absolute values for the wave impedances TE

rZ  and TM
rZ  depend on the cone half-angle 0θ  

and kr .   

    
Fig. 7. The absolute value of the wave impedance TE

rZ  and TM
rZ  as a function of kr  for the 

spherical TE and TM modes inside the conical hollow metallic waveguide. 

6. Electromagnetic fields configurations and fields intensities distributions within 
tapered hollow metal waveguide 

In this section we consider the electromagnetic fields configurations and fields intensities 
distributions inside tapered hollow metal waveguide. To provide a better understanding of the 

11TE  
01TM  

21TE  

11TM  01TE  21TE  
11TM  

11TE  

01TE  

01TM  

 (a)  (b) 
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fields configurations for the spherical TE and TM modes, in Fig. 8 the electric-field time-

average engergy density 
21

2 ε E  is plotted for the 11 01 21 11 01, , , ,TE TM TE TM TE  modes at a 

wavelength 1.06 mλ μ= , the distance from the cone vertex 20r mm=  and a cone half-angle 

0 6θ π= . We find that the modes configurations are similar to those of the cylindrical hollow 
metal waveguide for which completely transverse modes are obtained. 

 
11TE  mode                                                                     01TM  mode  

 
21TE  mode                                                                           11TM  mode  

  
01TE  mode                                                       The energy density scaled by the color 

Fig. 8. The electric-field time-average engergy density for the first 5 modes is shown in the 
spherical cross section with the radius 20r mm= . The color scheme is such that the engergy 
density goes from minimum (green) to maximum (yellow). 

min max 
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Fig. 9. The fields intensities distributions within tapered hollow metal waveguide. The color 
scheme is such that the engergy density goes from minimum (green) to maximum (yellow).  (a) 
Intensity distributions of 11TE  mode propagating from 20r mm=  to 15r mm=  inside tapered 

hollow metal waveguide with 0 6θ π= . (b) Intensity distributions of 01TM  mode propagating 

from 20r mm=  to 10r mm=  inside tapered hollow metal waveguide with 0 6θ π= . 

Figures 9(a) and 9(b) show distinct intensity distributions for 11TE  and 01TM  modes inside 

tapered hollow metal waveguide with 0 6θ π= , respectively. Figure 9(a) reprents the 

intensity distributions of 11TE  mode propagating from 20r mm=  to 15r mm= . Figure 9(b) 

reprents the intensity distributions of 01TM  mode propagating from 20r mm=  to 10r mm= . 
In order to capture the fields intensities distributions in the hollow core along the propagating 
direction, we only plot the intensities distributions in the azimuthal angles range from 0  to 
3 2π . In the Fig. 9 we observe that all modes appear to be very well confined to the hollow 
core, i.e.,  the tapered hollow metallic waveguide can focus a laser beams into a small beam 
spot . Utilizing the characteristic of the tapered hollow metallic waveguide, some researchs 
find the waveguide is useful for medial and dental applications [12].  

7. Conclusions 

(1) We have developed an exact analytical approach for the description of the electromagnetic 
fields inside a hollow metallic waveguide with a taper. Analytical expressions for the spatital 
distributions of electromagnetic field components, attenuation constant, phase constant and 
wave impedance are derived. 
(2) According to our theory the modes configurations inside a tapered hollow metallic 
waveguide are similar to those in a cylindrical hollow metallic waveguide, but the 
transmission characteristics and engergy densities distributions along propagating direction 
have a different behavior. It is shown that all modes run continuously from a propagating 
through a transition to an evanescent region and the value of the attenuation increases as the 
distance from the cone vertex and the cone angle desrease. A strict distinction between pure 
propagating and pure evanescent modes can not be achieved. There is no well-defined cutoff 
wavelength but rather a cutoff radius. It is interesting to note that the magnitude of the cutoff 
radius is related to the wavelength and the cone half-angle. The values of attenuation and 
phase constants for the spherical TE and TM modes inside the tapered hollow metallic 
waveguide depend on the cone half-angle very seriously. As the cone half-angle decreases, the 
value of the attenuation increases. The smaller the cone half-angle is, the faster the modes 
attenuate. This can explain why large taper angle may improve the light throughout in 
aperture probe which finds an important application in scanning near-field optical microscopy 
[13]. 

 (a)  (b) 
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(3) As follows from our calculations, we find that in the propagating region the attentuation of 
some modes decays faster than those of others, and one mode after the other reaches cutoff in 
the tapered hollow metallic waveguide as the distance from the cone vertex decreases. 
(4) In the tapered hollow metallic waveguide, light is well confined in the hollow core (air 
region) because it is reflected back to the core by a metal wall. 
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