The Simple Pendulum

3 An application of Simple Harmonic Motion

L A mass m at the end of a massless

rod of length L

A There is a restoring force SN
which acts to restore the 0
mass to 6=0

F = -mgsin0 [ e
-

« Compare to the spring F.=-kx "

S AN

 The pendulum does not e
display SHM mgsind:™-




1 But for very small 6 (rad), we can make the
approximation (6<0.5 rad or about 25°)
— Simple pendulum approximation

N

sSiIn0 =0 = F =-mgl Thisis SHM
sinces =10 = L6  Arclength

S mg Looks like spring
F=—mg—=——S force
L L
Mg | Like the spring
(FS = —kx) =k = J | constant

[ Now, consider the angular frequency of the spring
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» With this w, the same equations expressing the
displacement x, v, and a for the spring can be used
for the simple pendulum, as long as 6 is small

e For 6 large, the SHM equations (in terms of sin
and cos) are no longer valid — more complicated
functions are needed (which we will not consider)

* A pendulum does not have to be a point-particle




The Physical Pendulum

/\\

"0 A rigid body can also be a pendulum

A The simple pendulum has a moment of inertia

] Rewrite w in terms of I [ = mL
g |mg |mgL
W = 1= B 2
L mlL mL
o= "8 o roL MEL
1 27T 1

m
A L is the distance from the rotation axis °

to the center of gravity




Example

N

! Use a thin disk for a sim
with rotation axis at t
of oscillation and b) t

ple physical pendulum
ne rim. a) find its period

ne length of an

equivalent simple pendulum.

Solution:

a) From table 10.1
I, =1MR*

C

But we need I at the rim, so
apply parallel axis theorem, h=R

1. =1+ MD’=1MR’>+ MR’=3MR’




Since physical pendulum frequency is

\/MgL =] -=-2T ]
MgL

Distance from rotation axis to cm: L=R

3 MR*
T=2m,|= =27 3K
\ MgR 2g

Let R=0.165 m (6.5 inches)

T =2n 3(0.165) =0.999s
2(9.8)

Would make a good clock!



Note that the period or frequency of a pendulum
does not depend on the mass and would be

N

different on other planets

b) For an equivalent simple pendulum, we need
the simple and disk pendulums to have the same

period S 1 T

I, =21 3—R= Sp=2n £
\2¢g g

3R L 3R L

o oLy ORI 4y

V2g \g 2¢ g

L= 3§ _ 3(0'1265 M) _0.248m




Damped Harmonic Motion

\EI Simple harmonic motion in which the amplitude

is steadily decreased due to the action of some
non-conservative force(s), i.e. friction or air
resistance (F=-bv, where b is the damping
coefficient)

3 classifications of damped harmonic motion:
1. Underdamped — oscillation, but amplitude
decreases with each cycle (shocks)
2. Critically damped — no oscillation, with
smallest amount of damping
3. Overdamped — no oscillation, but more
damping than needed for critical




@®Apply Newton’s 2nd Law

@ The solution is b,
x(t) =Aye ™ cos(wt + ¢,)

®Where
w=~w>=(bB12m)?  w,=k/m

@®Type of damping determined by comparing

w, and b/2m
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/SHM

Envelope
of damped
motion

A=A0e-bt/2m

ot (x rad) —



Forced Harmonic Motion

N
\J

[ Unlike damped harmonic motion, the amplitude
may increase with time

 Consider a swing (or a pendulum) and apply a
force that increases with time; the amplitude will
mcrease W|th t|me

Fo T T ForcedHM T/

SHM

‘ot (xrad) ——




A Consider the spring-mass system, it has a

frequency f=ﬁ\/k/m =f()

N

1 We call this the natural frequency f, of the
system. All systems (car, bridge, pendulum, etc.)
have an f,

d We can apply a time-dependent external driving

force with frequency £, (f,=f,) to the spring-mass
system F(t)=F,, cos(2m f,t)

A This is forced harmonic motion, the amplitude
Increases

xt

Q But if £=f, the amplitude can increase
dramatically — this is a condition called resonance




d Examples: a) out-of-balance tire shakes
violently at certain speeds,

b) Tacoma-

N

‘Narrows
bridge’s 1,
matches
frequency
of wind




