It seems like an updated lunar module could do the job. Wikipedia lists the Ascent stage as capable of 2220 m/s and the descent stage as capable of 2500 m/s.<snip>
The Popular Mechanics article didn't stated what kind of propellants will be used. I am presuming will be likely HydroLox with less likely choice of MethoLox. The type of propellants selected dictates the size of the vehicle.
Article by Anatoly Zak for Popular Mechanics on NASA's Lunar lander plans. Article says the lander mass is 45 t (three times that of Apollo) and is split into three 15 t parts: Ascent Stage, Descent Stage and Space Tug. ..The article says that a 22 t tanker is used to refuel the Ascent Stage and Space Tug at the Gateway. ..
As a result, the expendable descent stage, which would arrive with each new Orion crew (as well as propellant for the ascent engine), could have a minimum size, while the space tug could be used for multiple ferry trips.
Lockheed Martin's 62 ton lunar lander can only land 1 ton of payload to the lunar surface, versus the ~15 tons of this notional design. If you don't have a separate descent stage actually building the kind of base you need to enable large scale ISRU is very difficult.
Quote from: M129K on 11/10/2018 07:49 pmLockheed Martin's 62 ton lunar lander can only land 1 ton of payload to the lunar surface, versus the ~15 tons of this notional design. If you don't have a separate descent stage actually building the kind of base you need to enable large scale ISRU is very difficult. That was 1 ton of payload in addition to a crew cabin. A cargo-only version would have a lot more payload. And if you based your depot in a high polar LLO like you ought to for surface ops, you could probably get north of 15tons of delivered payload out of a lander that size. Possibly closer to 20-30mT. I'd have to run some numbers.~Jon
That was 1 ton of payload in addition to a crew cabin. A cargo-only version would have a lot more payload. And if you based your depot in a high polar LLO like you ought to for surface ops, you could probably get north of 15tons of delivered payload out of a lander that size. Possibly closer to 20-30mT. I'd have to run some numbers.~Jon
Quote from: jongoff on 11/10/2018 09:37 pmQuote from: M129K on 11/10/2018 07:49 pmLockheed Martin's 62 ton lunar lander can only land 1 ton of payload to the lunar surface, versus the ~15 tons of this notional design. If you don't have a separate descent stage actually building the kind of base you need to enable large scale ISRU is very difficult. That was 1 ton of payload in addition to a crew cabin. A cargo-only version would have a lot more payload. And if you based your depot in a high polar LLO like you ought to for surface ops, you could probably get north of 15tons of delivered payload out of a lander that size. Possibly closer to 20-30mT. I'd have to run some numbers.~JonYeah, if you assume the crew cabin is ~10mT of the 22mT dry mass for the LM lander (ie that the lander propulsion section is ~12mT), I get a payload drop-off capability of ~39mT using base your system in LLO. I still get 12mT of drop-off capability if you base your system out of NRHO. This is part of why I think NRHO sucks as a staging point for lunar lander missions--adding another 40% to the round-trip dV is silly. ~Jon
If cargo landers are to be based at the Gateway spacestation it will need attachment points. The standard NASA Docking Port is too sophisticated since it has a hatch for people access. A mechanical connector, electrical power, data and control interfaces may be sufficient, providing cargo and the various propellants can be loaded using the station's arm.
Quote from: A_M_Swallow on 11/12/2018 07:54 pmIf cargo landers are to be based at the Gateway spacestation it will need attachment points. The standard NASA Docking Port is too sophisticated since it has a hatch for people access. A mechanical connector, electrical power, data and control interfaces may be sufficient, providing cargo and the various propellants can be loaded using the station's arm.There will be an station arm, so there will be at least a couple grapple fixtures with power/data. The lander just has to replicate the end effector. Even modules that didn't have them installed had them installed later, like the fixture on the Zarya module.
Hubble and JWST have been fitted with passive IDS compatible docking fixtures that only provide a mechanical attachment. I don't see why you couldn't use that.
Quote from: Nibb31 on 11/12/2018 08:32 pmHubble and JWST have been fitted with passive IDS compatible docking fixtures that only provide a mechanical attachment. I don't see why you couldn't use that. Size and weight. The IDS docking port is designed to have a Dragon or CST-100 massing 10-30 tonne attached to the other end of it. The Moon Express MX-1 lunar lander only masses 250 kg (0.25 tonne) when fully fuelled.
<snip of NHRO being a bad orbit>I think there are other factors to consider. The table below is from here.