# Thermodynamic Constraints in Operating a Solid Oxide Electrolysis Stack on Dry Carbon Dioxide Gathered From the Mars Atmosphere

ICE 2017 11:40 June 15, 2017

J. Hartvigsen, J. Elwell, S. Elangovan, Ceramatec, Inc/OxEon Energy







## Why SOEC On Mars?





#### Mars Mission Architectural Decisions



- Mars Design Reference Architecture (DRA 5.0)
  - 1. Mission type (orbital trajectory)
  - 2. All-up vs. Pre-deploy Cargo
  - 3. Aerocapture vs. Propulsive Mars Orbit Cargo Capture
  - 4. In-Situ Resource Utilization for Mars Ascent (ISRU)
  - 5. Mars Surface Power



#### **DRA** "Notable Advantages Of ISRU"



- Production of O<sub>2</sub> from the atmosphere for ascent from Mars, as well as consumables (O<sub>2</sub>, buffer gases, H<sub>2</sub>O) for the crew, enables robust exploration.
- Atmospheric-based ISRU processes are less operationally complex than surface-based processes.
- Reduced total initial mass in Low Earth Orbit (LEO) and subsequent number of launches.
- Reduced lander vehicle size and volume.
- Greater surface exploration capability (Extravehicular Activity (EVA), roving, etc.).
- Life support functional redundancy via dissimilar means.
- Lower mission risk due to fewer launches.
- Lower life cycle cost through third mission (if same landing site).

## More Advantages of CO<sub>2</sub> SOEC



- Reversible operation for temporary power from stored gases
- Potential for electrochemical oxygen compression
  - •53mV/decade of pO<sub>2</sub>, thermodynamic limit
  - Joule Thomson expansion for cryo-oxygen
- Estimate savings of 300-450 tons IM-LEO
  - Minimum savings of 3 heavy launches
- Cost savings > 10<sup>9</sup> USD

## Thermodynamic Boundaries



- High pO<sub>2</sub> boundary limited by Ni oxidation
  - · Result of choice of nickel cermet cathode
- Low pO<sub>2</sub> boundary limited by Boudouard Rxn
  - Spontaneous disproportionation of CO to  $\mathrm{CO}_2$  and  $\mathrm{C}_{\mathrm{s}}$
  - Independent of choice of cathode material
- Practical low pO<sub>2</sub> limit considers electrochemical factors:
  - Direct CO<sub>2</sub> reduction potential?
  - Electrochemical reduction of CO
  - Effectively an applied voltage limit





| Governing Equilibrium                          | pO <sub>2</sub> , atm | Vrev  | CO in CO2, 1 atm |  |  |
|------------------------------------------------|-----------------------|-------|------------------|--|--|
| Ni-NiO                                         | 1.2e-14               | 0.741 | 0.55%            |  |  |
| CO-CO <sub>2</sub> , 2% CO in CO <sub>2</sub>  | 8.9e-16               | 0.801 | 2%               |  |  |
| CO-CO <sub>2</sub> , 60% CO in CO <sub>2</sub> | 1.7e-19               | 1.000 | 60%              |  |  |
| Boudouard                                      | 5.3e-21               | 1.079 | 89.3%            |  |  |

## **Consequences of Oxidation**





- STK-007 Operational History
  - 15 cycles, full thermal cycle with 120m operation on pure CO<sub>2</sub>
  - Dramatic degradation suggestive of progressive oxidation front



- STK-007 Post Test Examination
  - · Progressive oxidation front confirmed
  - Non-conductive cathode and current distribution layers

## System Mitigation of Oxidation



- "CAC" supplies pure CO<sub>2</sub> to SOXE
  - CAC = CO<sub>2</sub> Acquisition and Compression
- Pure CO<sub>2</sub> complications to operation
  - Not reducing at reactant inlet
    - Electrode oxidation possible



$$E_{rev} = E_N^0(T) + \frac{RT}{2F} \ln \left( \frac{p_{CO2}}{p_{CO} \sqrt{p_{O2}}} \right)$$

- No thermodynamic penalty for inert diluents
  - Reversible Driving Potential:
  - Ratio of p<sub>CO2</sub> / p<sub>CO</sub> unaffected by reactant diluents
  - Ratio of p<sub>CO2</sub> / p<sub>CO</sub> unaffected by total pressure
- Cathode tailgas recycle is needed



- VMGSim process simulation
  - Rigorous mass and energy balance
    - Full VLE and reaction thermodynamics
- One additional VFCD
  - Assumed 40% exit [CO]
  - 95:05 split gives 2% [CO] at inlet

#### **Utilization Limit Sweeps, CSA-003R**



A COORSTEK COMPANY Opened File - CSA 160920 003R OC2\_R.tdms og Path Z:\PC479\CSA 160920 003R OC2 R.tdms Cell Voltage 6-10 \_ # X Comments Cell Voltage 6-10 CELL 10 VOLTAGE 1 CELL 9 VOLTAGE\_1 1.6- 1.6- 1.6- 1.6- 1.6 CELL 8 VOLTAGE\_1 CELL 7 VOLTAGE 1 70 g/h CO<sub>2</sub> 75 g/h CO<sub>2</sub> 80 g/h CO<sub>2</sub> 100 g/h CO<sub>2</sub> CELL 6 VOLTAGE 1 CELL 5 VOLTAGE 1 CELL 4 VOLTAGE 1 CELL 3 VOLTAGE 1 CELL 2 VOLTAGE\_1 CELL 1 VOLTAGE 1 Method of T. Skafte STACK VOLTAGE\_1 STACK CURRENT 1 CO/CO2 OUT P 01 RD INLET P\_01 RD 1.4- 1.4- 1.4- 1.4- 1.4-CO/CO2\_01 RD O2\_01 RD Cell #8 CO2 01 RD N2\_01 RD H2\_01 RD AIR 01 RD CO 01 RD FURNACE 01 RD - % Heating Power FURNACE\_01 RD Output H2 01 SP AIR\_01 SP CO\_01 SP Ramper 1 Ramp-N2\_01 SP □ Ramper Ramp-FURNACE 01 SP Step current to limit where Cells #6,7,9,10 voltage diverges 0.8- 0.8- 0.8- 0.8- 0. 09:30 09:40 09:50 10:00 10:10 10:20 10:30 10:40 10:50 11:00 11:10 11:20 11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40 12:50 13:00 13:10 13:20 13:30 13:40 09/30 09/30 09/30 09/30 09/30 09/30 09/30 09/30 09/30 Time Filter

06:00 PM 12:00 AM 06:00 AM 12:00 PM 06:00 PM 12:00 AM

09/29

06:00 AM 12:00 PM 06:00 PM 12:00 AM 06:00 AM 12:00 PM 06:00 PM 12:00 AM

## Consequences of C<sub>s</sub> Deposition







- Carbon deposition anticipated on cell #8
  - High cell voltage (cause or effect, or both?)
  - · High open circuit voltage
    - Most cells ~0.8V
    - Cell #8, ~1.06V, C<sub>s</sub>-CO equilibrium potential





Cell #8 - CSA-003R - Cell #9

- Electrode microstructure destroyed
- Electrode-electrolyte interface separated
- Flow channels blocked with solid carbon
- Electrolyte blackened, weakened, cracked
  - Partial reduction of zirconia?

## **Utilization Limiting Cell**



- Minimum CO<sub>2</sub> flow rate cell
  - One cell must have lowest flow in stack
  - Position in stack
    - Entrance jet plenum flow circulation
    - Cell outflow effect on local pressure
  - Entrance/Exit obstructions
    - Glass overflow into channels
  - Channel height variation
    - Flow ~ channel height as h<sup>3</sup>
      - Pressing variation
      - Sanding
      - Coating



|          | AVG_CELL1 | AVG_CELL2 | AVG_CELL3 | AVG_CELL4 | AVG_CELL5 | AVG_CELL6 | AVG_CELL7 | AVG_CELL8 | AVG_CELL9 | AVG_CELL10 | AVG_ASR |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|---------|
| CSA-007  | 1.032     | 1.039     | 1.043     | 1.052     | 1.043     | 1.034     | 1.035     | 1.044     | 1.059     | 1.045      | 1.378   |
| CSA-008  | 1.047     | 1.040     | 1.048     | 1.039     | 1.054     | 1.042     | 1.034     | 1.033     | 1.035     | 1.050      | 1.378   |
| CSA-006R | 1.033     | 1.031     | 1.039     | 1.032     | 1.041     | 1.037     | 1.048     | 1.044     | 1.046     | 1.034      | 1.365   |
| CSA-009  | 1.059     | 1.045     | 1.036     | 1.042     | 1.044     | 1.079     | 1.043     | 1.043     | 1.036     | 1.065      | 1.411   |
| JSA-004  | 0.925     | 1.006     | 1.027     | 1.043     | 1.034     | 1.033     | 1.035     | 1.041     | 1.033     | 1.037      | 1.338   |
| JSA-005  | 1.074     | 1.071     | 1.067     | 1.065     | 1.044     | 1.133     | 1.151     | 1.080     | 1.070     | 1.074      | 1.609   |
| JSA-006  | 1.024     | 1.035     | 1.018     | 1.040     | 1.040     | 1.020     | 1.030     | 1.037     | 1.045     | 1.031      | 1.312   |
| JSA-007  | 1.143     | 1.059     | 1.088     | 1.092     | 1.092     | 1.067     | 1.058     | 1.052     | 1.045     | 1.070      | 1.549   |
| JSA-008  | 1.060     | 1.053     | 1.038     | 1.038     | 1.038     | 1.040     | 1.042     | 1.038     | 1.045     | 1.027      | 1.378   |
| JSA-009  | 1.046     | 1.115     | 1.091     | 1.080     | 1.068     | 1.038     | 1.056     | 1.067     | 1.069     | 1.057      | 1.529   |
| CSA-010  | 1.122     | 1.080     | 1.090     | 1.107     | 1.086     | 1.053     | 1.056     | 1.051     | 1.090     | 1.055      | 1.601   |
| JSA-010  | 1.042     | 1.040     | 1.063     | 1.074     | 1.046     | 1.038     | 1.041     | 1.066     | 1.072     | 1.042      | 1.437   |
| JSA-011  | 1.070     | 1.077     | 1.067     | 1.081     | 1.052     | 1.045     | 1.060     | 1.094     | 1.053     | 1.046      | 1.518   |
| JSA-012  | 1.020     | 1.029     | 1.031     | 1.028     | 1.050     | 1.025     | 1.030     | 1.050     | 1.045     | 1.058      | 1.417   |
| JSA-013  | 1.018     | 1.092     | 1.054     | 1.054     | 1.065     | 1.038     | 1.053     | 1.047     | 1.069     | 1.044      | 1.515   |
| JSA-014  | 1.066     | 1.028     | 1.052     | 1.051     | 1.021     | 1.035     | 1.025     | 1.039     | 1.032     | 1.020      | 1.422   |
| JSA-015  | 1.036     | 1.025     | 1.066     | 1.063     | 1.046     | 1.037     | 1.037     | 1.068     | 1.041     | 1.040      | 1.470   |
| JSA-016  | 1.038     | 1.030     | 1.031     | 1.020     | 1.063     | 1.055     | 1.079     | 1.048     | 1.043     | 1.064      | 1.479   |
| JSA-017  | 1.042     | 1.054     | 1.011     | 1.023     | 1.018     | 1.065     | 1.025     | 1.037     | 1.028     | 1.023      | 1.395   |
| JSA-018  | 1.033     | 1.022     | 1.048     | 1.033     | 1.043     | 1.030     | 1.061     | 1.052     | 1.049     | 1.057      | 1.457   |
| Averages | 1.047     | 1.049     | 1.050     | 1.053     | 1.049     | 1.047     | 1.050     | 1.051     | 1.050     | 1.047      | 1.44    |

#### CSA-004 800°C Utilization Sweeps





Carbon Monoxide Mole Fraction, [CO] at 880 hPa

#### **CSA-004 800C Flow-Utilization Limit**





#### **CSA-004 Activation Polarization**





#### **CSA-005: Mapping Test Plan**



Build: 17Oct16 End Test: 11Nov16

#### Operational Testing started October 24

- Explore going from high to low temperatures
  - 830°C, 810°C, 800°C, 790°C, 770°C
  - High temperature has lower ASR, higher CO reduction V<sub>Nernst</sub>
  - Stop based on  $V_{op} < V_{Nernst}$  to avoid crossing threshold
  - Map becomes bounded by performance (ASR) and safe thermodynamic space rather than detecting unsafe state.
  - Try to run test without reaching any carbon deposition state

## **CSA-005 800C Operating Lines at Varying CO<sub>2</sub> Flow Rates**





CO reduction Nernst is a function of cathode gas composition and temperature – staying below this minimizes risk of coking

Graph based on overall average exit [CO], local [CO] may be higher.

#### Effect of Flow Rate on Stack Performance



A COORSTEK COMPANY



Slope of I-V curve reduces as flow rate increases

Extrapolated intercept is near constant and ≠ OCV

#### **Effect of Temperature on Performance**





Slope (and ASR)
decreases with
increasing temperature
at fixed flow rate

#### Safe Operating Regime at 800°C





Cycles and additional stacks don't change limits much at low flows

Mid-range flows appear to challenge stability

Safe operating boundary less certain at mid-range flows and higher flows with accumulation of cycles

Stacks CSA-007, CSA-008 and CSA-006R were run to 21 cycles with a limit as used for CSA-005

## **Mars Operations Challenges**



- No possibility of man-in-loop operation
  - Twice daily communication windows
- Daily variation of CO<sub>2</sub> flow rate anticipated
  - CO<sub>2</sub> flows vary with ambient pressure & temperature
- Primitive data acquisition and control
  - "Flight Heritage" hardware
  - Software qualification standards
  - Simple run table control
- Sensor uncertainty
  - Flow, Temperature, power supply
  - No stack voltage leads
    - High lead loss to minimize heat leak through leads
- High number of thermal cycles
  - Degradation must be well characterized

- No process utilities for stack recovery
  - Cathode oxidation ends mission
  - Carbon deposition ends mission
- Need to plan safe conditions as a function of:
  - Projected CO<sub>2</sub> flow rate (Mars ambient T, P)
  - Inferred temperature deviations (overall, end to mid)
  - Cycle to cycle performance decay
- As simple as possible

#### **Operating Window - Driving Performance**





### **Basic Operating Model**



- "Apparent" ASR doesn't address flow variations,
- $R_a'' = \left(\frac{v_{op} v_{oc}}{i}\right)$

- or observed activation polarization,

$$[CO_2] = 1 - [CO$$

$$\Delta G_{CO_2}([CO]) = \Delta G^{\circ}(T) + RT \ln \left( \frac{[CO]\sqrt{[O_2]}}{(1 - [CO])} \right)$$

• or observed activation polarization,  
• so define an "Intrinsic" ASR as, 
$$R_i^{"} = \left(\frac{V_{op} - \overline{E_N} - V_{act}}{j_i}\right)$$
  $[Co_2] = 1 - [Co]$   
• with fixed activation polarization  $V_{act}$ ,  
• and the integral average  $CO_2$  reduction  
• Nernst potential as:  $\overline{E_N} = \frac{\int_{[CO]_{exit}}^{[CO]_{exit}} \Delta G_{CO_2} d[CO]}{2\mathcal{F}([CO]_{exit} - [CO]_{inlet})}$ 

which evaluates and simplifies as:

$$\overline{E_N} = \frac{\left( [CO]_{exit} \Delta G_{CO_2}([CO]_{exit}) - [CO]_{inlet} \Delta G_{CO_2}([CO]_{inlet}) + RT \ln \frac{([CO]_{exit} - 1)}{([CO]_{inlet} - 1)} \right)}{2\mathcal{F}([CO]_{exit} - [CO]_{inlet})}$$

• Fit *iASR* temperature variation  $f(T) = Ae^{\left(\frac{-E_{act}}{RT}\right)}$ , such that  $f(1073^{\circ}K) = 1$ 

#### **Cycle Life Model**



- Assume power law in intrinsic ASR
- Similar to long term operation increase in ASR using a parabolic rate law where γ = 0.5 and tau, is the time to double initial ASR

 $\tau \sim 40e3$  hours

• Time replaces (n-1)

$$R_{i_n}^{"} = R_{i_0}^{"} \left( 1 + \left( \frac{(n-1)}{\tau} \right)^{\gamma} \right)$$

$$R_{i_0}^{"} = 0.68 \Omega - cm^2$$

$$\tau = 70 \text{ cycles}$$

$$\gamma = 0.89$$

#### **Ceramatec Fuel Cells Moving Forward**







www.OxEonEnergy.com

Flight qualification completed, MOXIE flight builds completed June 2017, System integration underway at JPL

#### **Scale-Up and Manufacturing**

- Formation of OxEon Energy
- Focus on Scale-up and commercialization of the ruggedized hermetic stack for hydrogen/syngas production, or fuel cell operation



#### **Thank You**

Additional Info: joseph.hartvigsen@oxeonenergy.com jjh@ceramatec.com





