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Why SOEC On Mars?
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Mars Mission Architectural Decisions
• Mars Design Reference Architecture (DRA 5.0) 

1. Mission type (orbital trajectory)
2. All-up vs. Pre-deploy Cargo
3. Aerocapture vs. Propulsive Mars Orbit Cargo Capture
4. In-Situ Resource Utilization for Mars Ascent (ISRU)
5. Mars Surface Power
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DRA “Notable Advantages Of ISRU”
• Production of O2 from the atmosphere for ascent from Mars, as well as 

consumables (O2, buffer gases, H2O) for the crew, enables robust exploration.
• Atmospheric-based ISRU processes are less operationally complex than 

surface-based processes.
• Reduced total initial mass in Low Earth Orbit (LEO) and subsequent number of 

launches.
• Reduced lander vehicle size and volume.
• Greater surface exploration capability (Extravehicular Activity (EVA), roving, 

etc.).
• Life support functional redundancy via dissimilar means.
• Lower mission risk due to fewer launches.
• Lower life cycle cost through third mission (if same landing site).
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More Advantages of CO2 SOEC

• Reversible operation for temporary power from stored 
gases

• Potential for electrochemical oxygen compression
•53mV/decade of pO2, thermodynamic limit
•Joule Thomson expansion for cryo-oxygen

• Estimate savings of 300-450 tons IM-LEO
•Minimum savings of 3 heavy launches

• Cost savings > 109 USD
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Thermodynamic Boundaries
• High pO2 boundary limited by Ni oxidation

• Result of choice of nickel cermet cathode
• Low pO2 boundary limited by Boudouard

Rxn
• Spontaneous disproportionation of CO to CO2

and Cs
• Independent of choice of cathode material

• Practical low pO2 limit considers 
electrochemical factors:
• Direct CO2 reduction potential?
• Electrochemical reduction of CO
• Effectively an applied voltage limit
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Governing Equilibrium pO2, atm Vrev CO in CO2, 1 atm
Ni-NiO 1.2e-14 0.741 0.55%
CO-CO2,   2% CO in CO2 8.9e-16 0.801 2%
CO-CO2, 60% CO in CO2 1.7e-19 1.000 60%
Boudouard 5.3e-21 1.079 89.3%

• Ni  +  ½ O2 <=> NiO,   ΔGf� = -142.9 kJ/mol
• CO + ½ O2 <=> CO2,  ΔGf� = -189.3 kJ/mol
• 2CO <=> Cs +  CO2,  ΔGf� =  -2.506 kJ/mol

Boudouard
boundary

Oxidation
boundary
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Consequences of Oxidation

• STK-007 Post Test Examination
• Progressive oxidation front confirmed
• Non-conductive cathode and current distribution layers
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• STK-007 Operational History
• 15 cycles, full thermal cycle with 120m operation on pure CO2

• Dramatic degradation suggestive of progressive oxidation front
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System Mitigation of Oxidation
• “CAC” supplies pure CO2 to SOXE

• CAC = CO2 Acquisition and Compression
• Pure CO2 complications to operation

• Not reducing at reactant inlet
• Electrode oxidation possible

• Thermodynamically indeterminate
• Open circuit voltage undefined

• No thermodynamic penalty for inert diluents
• Reversible Driving Potential:
• Ratio of pCO2 / pCO unaffected by reactant diluents
• Ratio of pCO2 / pCO unaffected by total pressure

• Cathode tailgas recycle is needed
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• VMGSim process simulation
• Rigorous mass and energy balance

• Full VLE and reaction thermodynamics

• One additional VFCD
• Assumed 40% exit [CO]
• 95:05 split gives 2% [CO] at inlet



9

Utilization Limit Sweeps, CSA-003R

70 g/h CO2 75 g/h CO2 80 g/h CO2 100 g/h CO2

Cell #8

Cells #6,7,9,10

Step current
to limit where
voltage diverges

Method of T. Skafte
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Consequences of Cs Deposition

• Carbon deposition anticipated on cell #8
• High cell voltage (cause or effect, or both?)
• High open circuit voltage

• Most cells ~0.8V
• Cell #8, ~1.06V, Cs-CO equilibrium potential

Cell #8    - CSA-003R – Cell #9CSA-003R Cell #8 cathode channels
• Electrode microstructure destroyed
• Electrode-electrolyte interface separated
• Flow channels blocked with solid carbon
• Electrolyte blackened, weakened, cracked

• Partial reduction of zirconia?
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Utilization Limiting Cell
• Minimum CO2 flow rate cell

• One cell must have lowest flow in stack
• Position in stack

• Entrance jet plenum flow circulation
• Cell outflow effect on local pressure

• Entrance/Exit obstructions
• Glass overflow into channels

• Channel height variation
• Flow ~ channel height as h3

• Pressing variation
• Sanding
• Coating

Baseline High / Low Voltage Cell Position

CFD Model Section View
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CSA-004 800°C Utilization Sweeps
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30 g/h reached 70% test limit
70, 75, 80 & 100 g/h at 4A limit
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CSA-004 800C Flow-Utilization Limit
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CSA-004 Activation Polarization
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CSA-004	Activation	Polarization

80	g/hr	@830C

80	g/hr	@800C

100	g/hr	@800C

55	g/hr	@800C

80	g/hr	@800C	V2

80	g/hr	@770C

80 g/hr	770C	1.7%	H2 

• Activation polarization is atypical for thin electrode ESC operating 
at 800°C as SOEC or SOFC with H2:H2O or reformate. 

• Unique to dry CO2 operation.
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CSA-005: Mapping Test Plan

Build: 17Oct16 End Test: 11Nov16

Operational Testing started October 24
• Explore going from high to low temperatures

• 830°C, 810°C, 800°C, 790°C, 770°C
• High temperature has lower ASR, higher CO reduction VNernst
• Stop based on Vop < VNernst to avoid crossing threshold
• Map becomes bounded by performance (ASR) and safe 

thermodynamic space rather than detecting unsafe state.
• Try to run test without reaching any carbon deposition state
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CSA-005 800C Operating Lines at 
Varying CO2 Flow Rates
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CO reduction Nernst is 
a function of cathode 
gas composition and 
temperature – staying 
below this minimizes 
risk of coking

Graph based on overall 
average exit [CO], local 
[CO] may be higher.

Increasing 
Temperature

Low Flow

High 
Flow
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Effect of Flow Rate on Stack Performance

Slope of I-V curve 
reduces as flow rate 
increases

Extrapolated intercept 
is near constant and ≠ 
OCV  



18

Effect of Temperature on Performance

Slope (and ASR) 
decreases with 
increasing temperature 
at fixed flow rate

CSA-005 Performance Map at 55 g/h Flow
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Safe Operating Regime at 800°C

Cycles and additional stacks 
don’t change limits much at low 
flows

Mid-range flows appear to 
challenge stability

Safe operating boundary less 
certain at mid-range flows and 
higher flows with accumulation 
of cycles

Stacks CSA-007, CSA-008 and 
CSA-006R were run to 21 cycles 
with a limit as used for CSA-0050.0	
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Mars Operations Challenges
• No possibility of man-in-loop operation

• Twice daily communication windows
• Daily variation of CO2 flow rate anticipated

• CO2 flows vary with ambient pressure & 
temperature

• Primitive data acquisition and control
• “Flight Heritage” hardware
• Software qualification standards
• Simple run table control

• Sensor uncertainty
• Flow, Temperature, power supply
• No stack voltage leads

• High lead loss  to minimize heat leak through leads

• High number of thermal cycles
• Degradation must be well characterized

• No process utilities for stack recovery
• Cathode oxidation – ends mission
• Carbon deposition – ends mission

• Need to plan safe conditions as a function 
of:
• Projected CO2 flow rate (Mars ambient T, P)
• Inferred temperature deviations (overall, end to 

mid)
• Cycle to cycle performance decay

• As simple as possible



21

Operating Window - Driving Performance
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Basic Operating Model
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• “Apparent” ASR doesn’t address flow variations,
• or observed activation polarization,
• so define an “Intrinsic” ASR as,
• with fixed activation polarization Vact,
• and the integral average CO2 reduction
• Nernst potential as:

• which evaluates and simplifies as:

• Fit iASR temperature variation                           , such that 𝑓 𝑇 = 𝐴𝑒
MNOPG
QR 𝑓 1073°𝐾 = 1
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Cycle Life Model
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• Assume power law in intrinsic ASR
• Similar to long term operation 

increase in ASR using a parabolic 
rate law where              and tau, is the 
time to double initial ASR

• Time replaces (n-1)

𝛾 = 0.5

𝜏~40𝑒3	ℎ𝑜𝑢𝑟𝑠
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Ceramatec Fuel Cells Moving Forward

Flight qualification completed,
MOXIE flight builds completed June 2017,
System integration underway at JPL

Scale-Up and Manufacturing
• Formation of OxEon Energy
• Focus on Scale-up and commercialization of the ruggedized hermetic stack for 

hydrogen/syngas production, or fuel cell operation

Beyond Current Potential

www.OxEonEnergy.com



Thank You
Additional Info: 

joseph.hartvigsen@oxeonenergy.com
jjh@ceramatec.com


