

MARS EXPLORATION PROGRAM – SUMMARY

- Decadal Survey science goals
 - Determine if life ever arose on Mars
 - Understand the processes and history of climate
 - Determine the evolution of the surface and interior
- Progress report
 - Making breakthroughs in Mars science
 - Gaining knowledge in preparation of future Mars exploration
 - Current missions are healthy and performing well
 - Technology investments are addressing pivotal issues for future Mars exploration architectures
- Our future architectures should adapt to evolving in Mars exploration
 - Existing program capabilities
 - Multiple international interests
 - Multiple commercial interests
- Investigating new, leaner Mars architectures to respond to global changes in Mars exploration

MARS EXPLORATION PROGRAM - DECADAL PRIORITY

- The committee established three high-priority science goals for the exploration of Mars:
 - Determine if life ever arose on Mars
 - Understand the process and history of climate
 - Determine the evolution of the surface and interior
- "A critical next step will be provided through the analysis of carefully selected samples from geologically diverse and well-characterized sites that are returned to Earth for detailed study using a wide diversity of laboratory techniques"
- "The highest priority Flagship mission for the decade of 2013-2022 is MAX-C ... However, the cost of MAX-C must be constrained in order to maintain programmatic balance."

DECADAL SURVEY MSR CONCEPTS

Sample Caching Rover

- MSL-heritage Skycrane EDL
- MAX-C Rover (solar powered)
- Sample Caching System
- Instrument suite for sample selection/context
- 2 integrated caches, each w/ 19 sample tubes

Key Technologies

- Sample Caching System
- Terrain Relative Navigation

Sample Return Lander

- MSL-heritage Skycrane EDL
- Pallet Lander
- Fetch Rover (157 kg)
- Mars Ascent Vehicle
 (2-stage Solid-Solid)
- 17-cm OS

Key Technologies

- Mars Ascent Vehicle
- · Fast Fetch Rover

Sample Return Orbiter

- Round-trip Orbiter (ChemicalPropulsion)
 - MOI, Aerobrake
 - OS Rendezvous & Capture
 - Earth Return
 - Earth Entry Vehicle
- · Mars Returned Sample Handling

Key Technologies

- · OS Rendezvous and Capture
- Back Planetary Protection

- Orbiters and rovers confirmed ancient habitable environment
- Rovers measured the environment for human explorers
- MRO revealed complex and evolving planet

New USGS geologic map of Mars summarizes findings since Viking⁵

Revealed Complex and Evolving Planet

- Imaging and spectroscopy revealed a rich history of geological processes^{1,2}, including aqueous activity recorded in the stratigraphy³ and mineralogy⁴ across the Martian surface
- Orbiters and rovers show Mars today is still a dynamic planet

- Carr and Head, Earth and Planet. Sci. Lett., 294, 185–4. 203 (2010)
- 2. Ehlmann, et al., *J. Geophys. Res.*, **121**, 10 (2016)
- 3. Grotzinger and Milliken, SEPM Special Pub #102 (2012)
- Ehlmann and Edwards, Annu. Rev. Earth Planet. Sci., 42, 291–315 (2014)
- 5. Tanaka et al., Planet. and Space Sci., 95, 11-24 (2014)

Confirmed Ancient Habitable Environment

- Mars Orbiter cameras mapped the remnants of river channels, deltas, lakes¹, and potentially even larger bodies of water billions of years old
- The **Spirit** and **Opportunity** rovers confirmed water with diverse chemistries persisted in the ancient past on the surface, as groundwater, and within hydrothermal systems²
- Curiosity assessed an ancient lake and groundwater system within Gale Crater; X-ray diffraction and evolved gas analyses of a drilled mudstone sample indicated past water with near-neutral pH and low-salinity³; Further analyses detected key chemical elements required by life, nitrates, and simple organic molecules⁴
- Exploration by Curiosity determined lakes and groundwater were present for at least millions of years, with variable chemistry, pH, and salinity⁵
- **MAVEN** obtained compelling evidence that the loss of atmospheric gases to space has been a major driver of climate change on Mars
- Upper-atmospheric structure of Ar isotopes indicates ~70% of the atmosphere lost to space by sputtering⁶

^{1.} Fassett and Head, Icarus, 198, 37-56 (2008)

^{2.} Arvidson, R.E., *J. Geophys. Res.,* **121,** 9, (2016)

^{3.} Grotzinger et al., Science, 350, 7575 (2015)

^{4.} Freissinet et al., *J. Geophys. Res.*, **120**, 495-514 (2015)

^{5.} Hurowitz et al., Science, **356**, 6849 (2017)

^{6.} Jakosky et al., Science, **355**, 1408–1410 (2017)

Measured Environment for Human Explorers

Robotic missions assessed subsurface water ice useful for human explorers

- Mars Odyssey detected and mapped shallow (<1 m) ground ice in both arctic regions¹
- Mars Phoenix Lander directly sampled north high-latitude ground ice²
- Radar sounding data from Mars Reconnaissance Orbiter and Mars Express show massive subsurface ice in polar caps and mid-latitude remnant glaciers³
- Mars Express and MRO mapped the locations of thousands of hydrated mineral deposits with high spatial resolution⁴

Robotic missions are characterizing the environments astronauts will experience on the journey to Mars and at the Martian surface

- Orbiters and landers compiled records of temperature, atmospheric pressure, dust, water vapor, wind, and solar visible and UV flux
- Curiosity measured the high-energy radiation dose received during cruise and at the Martian surface, and variations with solar cycles and storms⁵

^{1.} Boynton et al., Science, 297, 81-85 (2002)

^{2.} Smith et al., Science, 325, 58-61 (2009)

^{3.} Phillips et al., Science, 320, 1182-1185 (2008)

^{4.} Ehlmann and Edwards, Annu. Rev. Earth Planet. Sci., 42, 291–315 (2014)

^{5.} Hassler et al., *Science*, **343**, 1244797 (2014)

MARS MISSIONS

CURIOSITY- MISSION STATUS

- Drove 17.4 km since 8/5/12 landing
- More than sufficient MMRTG energy available to complete mission objectives

Curiosity pathway map Gale Crate

Drill Feed Status

- Drill feed, used to extend and retract drill bit, exhibiting "stickiness" since 12/1/16, likely due to foreign object
- Successfully extended drill bit to full extent (109mm) on 8/12/17
- Techniques to drill with feed extended (i.e. arm-only without stabilizers) in development since April 2017; testbed results promising; additional development required

Wheel Status

- Wheels accumulating cracks and punctures more rapidly than expected
- Mitigating through strategic terrain assessment and careful selection of local drive paths
- Extensive ground testing suggests >29 km total life (>11.6 km remaining), more than sufficient to complete mission

MRO – MISSION STATUS

- Launched in August 2005, achieved MOI March 2006
- Science Orbit since November 2006
 - Low Altitude = 250 km x 320 km
 - Inclination = 93.3 deg, Sun-Sync at 3:00 pm
 - Instruments nominal
- Success with both scientific and programmatic objectives (relay, reconnaissance, critical event coverage)
 - Over 309 Tb of science data returned
 - Completed imaging of ~95% of requested Mars 2020 landing sites
 - UHF Relay for PHX (past), MER, & MSL
 - Future relay for InSight, Mars 2020, & ESA ExoMars
- Healthy spacecraft with large fuel reserves (> 20 years)
 - Single string telecomm since 2006
 - All-stellar capability developed to preserve IMU life

MAVEN – MISSION STATUS

- Launched November 2013, achieved MOI September 2014
- Completed primary mission in November 2015
 - Met all mission success criteria and Level-1 requirements
 - Provided strong evidence for solar wind driven atmospheric loss history
- Currently in second extended mission (EM-2) through September 2018
- Spacecraft is in excellent health, with all instruments operating
- Carries Electra UHF transceiver and UHF antenna
- Plan to reduce apoapsis for improved relay performance
 - Assessing change from 6200 km to 4500 km
 - Exploring approaches to preserve fuel
 - Decision on orbit configuration by end of CY17

TRACE GAS ORBITER – MISSION STATUS

- Launched March 14, 2016, achieved MOI October 19, 2016
- ESA's ExoMars/Trace Gas Orbiter carries two NASA -provided Electra UHF relay payloads
 - Will provide relay services to both NASA and ESA landers/rovers
- Successful post-MOI Relay Checkout w/ MSL, MER: Nov 22, 2016
- Aerobraking in process; plan to reach final 400-km orbit by ~ Apr 2018
- Primary mission science/relay operations planned through Dec 2022
 - Planned fuel reserves for extended mission operations

INSIGHT - MISSION STATUS

- Contributed science instruments
 - CNES: SEIS (Seismomemeter)
 - DLR (Heat flow & Physical Properties Package)
- SEIS fully integrated on spacecraft
- Launch May 5 June 8, 2018
- Landing November 26, 2018

Spacecraft Full Functional completed, SEIS and other payload elements installed on Lander on August, 3 2017

MARS 2020 - MISSION STATUS

- Completed CDR Feb '17
- System Integration Review scheduled for February '18
- Spacecraft assembly on target to begin in March '18; 3 Candidate Landing Sites
- Technical, Programmatic
 - Healthy mass, power, and other technical margins
 - Key challenges in developments of sample caching system, new instruments, maintaining compliance with sample cleanliness, and mission conops
 - MOXIE to continue
 - Good schedule margins (~230 work days) to launch
 - Stable life-cycle costs since inception

NASA CONTRIBUTION TO ESA EXOMARS

TRN - TECHNOLOGY DEVELOPMENT

Objective

- Enable access to wider range of landing sites through descent image analysis to identify/avoid patches of hazardous terrain
 - Determines location relative to pre-stored map
 - Determines optimal direction for divert maneuver to avoid hazardous terrain
- Incorporated on Mars 2020
 - Key enabler for 2 of 3 top priority landing sites (Jezero Crater and NE Syrtis)

Velocimetry image landmark matching Processor Velocimetry image feature tracking image landmark matching Processor Altimetry narrow beam lidar Processor Altimetry narrow beam lidar Processor Altimetry narrow beam lidar Processor Pro

Terrain-Relative Navigation (TRN) uses real-time descent imagery to guide M2020 to a safe landing

Technology Maturation Progress

- Demonstrated performance on helicopter flights
 - 20 m error at 2 km altitude
- Vision Compute Element and associated algorithms developed
- M2020 system now in manufacture

MARS HELICOPTER - TECHNOLOGY DEVELOPMENT

Objective

- Explore utility of Mars aerial mobility
 - Regional-scale high-resolution reconnaissance to facilitate surface operations of future robotic missions
 - Access to extreme terrains, Scouting

Full-scale free flight testing in JPL Space Simulator

Technology Maturation Progress

- Controlled-flight feasibility demonstration June 2016
- Engineering Model in-work: Mass < 2 kg, solar powerd,300 m range on one charge, autonomous, dual cameras

MAV - TECHNOLOGY DEVELOPMENT

Objective

- Achieve stable orbit @ 18 deg, 350 km circular
- Minimize thermal survival power
- Constrain mass/volume

Technology Maturation Progress

- Pursuing hybrid propulsion SSTO approach
 - Paraffin based fuel has superior cold temperature properties (-90 C)
 - Inert fuel grain and low temp MON3 oxidizer
- Full scale motor test firings in-work

Mars Ascent Vehicle (MAV) ~2.4m length/~ 300 kg mass

Full-scale hybrid motor test at Whittinghill Aerospace

Full-scale hybrid motor test at Space Propulsion Group

REALIZING MSR: GUIDING PRINCIPLES

STRATEGIC APPROACH FOR MSR IMPLEMENTATION

- Flexible requirements
- Focused scope
- Capitalize on experience base
- Limit new development
- Make early technology investments to mature readiness and minimize cost risks
- Leverage partnerships
- Strong programmatic discipline in execution

NOTIONAL MSR TIMELINE

MARS ORBITAL INFRASTRUCTURE

- Current relay assets (MRO/MAVEN/TGO) are healthy, with adequate propellant for ops through M2020 prime mission and beyond
 - MAVEN will transition greater comm support in extended mission operation
 - MRO site reconnaissance for M2020 fulfills SRL recon needs
- ESA's ExoMars/TGO (w/NASA Electra radio) provides additional relay services to NASA landers/rovers
- SRO mission will serve as prime relay for SRL, augmented by existing assets
- Possibility to leverage future commercial capabilities would add additional robustness

MRO (2005)

MAVEN (2013)

ExoMars/TGO (2016)

SAMPLE RETURN: KEY REQUIREMENTS

LAND in the right place

Land in small landing error ellipse (≤10 km) to access M2020 sites

COLLECT samples fast

Long traverse with tight timeline

- 130 sols for driving km (rover odometry)
- 20 sols for tube pickup (1 tube/sol)
- 90 sols for faults/anomalies/engineering activities

Get it BACK

Launch, rendezvous and return

TWO LANDER CONCEPTS

Common Attributes

- Identical cruise and entry architecture
- ~ 10 km landing ellipse
- ~ 900-1000 kg landed useful mass
- Accommodates ~ 600 kg
 MAV and Fetch Rover

Propulsive Platform LanderConcept Deployed

Two concepts that leverage Mars program legacy system capabilities

NOTIONAL SAMPLE RETURN ORBITER

Design for Orbital Rendezvous & Fast Sample Return

- Rendezvous & Capture
- Containment and Earth Planetary Protection
- Communication Relay Support for Surface Ops and Critical Events
- Return to Earth, either via
 - Direct return to Earth
 - Deliver to cis-lunar space for human-assisted returns

Implementation Options

- NASA provided
- Partner provided

PARTNERSHIP OPPORTUNITIES

International

- Enduring scientific/technical and programmatic interests
- Multiple space agencies headed to Mars
- Growing commercial interest in Mars
 - Potential to leverage commercial offerings of capability
- Exploration benefits from MSR
 - Feed-forward into preparation, planning and development
 - First round trip demonstration
 - Samples inform environmental uncertainties [biological, physical, toxicity]
 - Potential opportunity for early leverage of cis-lunar capabilities

MARS MISSIONS

NEXT STEPS

KEY QUESTIONS

MARS EXPLORATION PROGRAM – SUMMARY

- Decadal Survey science goals
 - Determine if life ever arose on Mars
 - Understand the processes and history of climate
 - Determine the evolution of the surface and interior
- Progress report
 - Making breakthroughs in Mars science
 - Gaining knowledge in preparation of future Mars exploration
 - Current missions are healthy and performing well
 - Technology investments are addressing pivotal issues for future Mars exploration architectures
- Our future architectures should adapt to evolving in Mars exploration
 - Existing program capabilities
 - Multiple international interests
 - Multiple commercial interests
- Investigating new, leaner Mars architectures to respond to global changes in Mars exploration