electrons project outward from the inner core, and gamma rays project inward from the outer ring. Because this electron/photon counterflow creates a deficit of electrons (relative to protons) in the core, a massive electrostatic potential is developed and the palladium core attracts lower-energy electrons from the suit's wiring. The ejection of electrons from the core towards the rim of the device produces an electrical cell capable of generating enormous voltage and current. Here's the full proposed reactor start-up process:Using external power, Pd-103 is ionized by an electric arc, and accelerated to high velocity in the outer ring. There may also be some externally-powered gamma ray production to jump-start the inner core.Pd-107 in the inner core starts to emit high-energy electrons as it decays to Ag-107. The electrons escape the core and are directed by magnetic fields into the outer ring. Lack of electrons creates a net positive charge in the core, which slows further emission (preventing run-away decay) until the electrons can be externally replenished.In the outer ring, the high-energy free electrons collide with high-energy Pd-103+ ions. This causes instantaneous electron capture and gamma ray emission. The gamma rays are deflected inward towards the core, thus catalyzing further electron emission and producing a self-sustaining reaction. Note that the reaction is self-sustaining, but very slow while the reactor is idle.The electron flow from the inner core to the outer core creates an electric potential difference. When a circuit is created through the suit's electrical loads, the outer ring has an excess of electrons and the inner core has a shortage of electrons. This creates current.The electrical current through an external load relieves the electrostatic charge accumulations that initially slowed the reactions. So the less power the suit draws, the slower the reactor produces radioactive decay, and the more power the suit draws, the faster the reactions are catalyzed. That way, the power output automatically throttles according to demand.The palladium slowly converts to Rh-103 and Ag-107, and the reactor runs out of power when the palladium is fully consumed.