
ar
X

iv
:h

ep
-p

h/
04

09
29

2v
2 

 3
0 

Ju
l 2

00
5

DE-FG05-97ER41031-57

Hydrodynamics of the Vacuum

P. M. Stevenson

T. W. Bonner Laboratory, Department of Physics and Astronomy

Rice University, P.O. Box 1892, Houston, TX 77251-1892, USA

Abstract:

Hydrodynamics is the appropriate “effective theory” for describing any fluid medium at

sufficiently long length scales. This paper treats the vacuum as such a medium and derives

the corresponding hydrodynamic equations. Unlike a normal medium the vacuum has no

linear sound-wave regime; disturbances always “propagate” nonlinearly. For an “empty

vacuum” the hydrodynamic equations are familiar ones (shallow water-wave equations)

and they describe an experimentally observed phenomenon — the spreading of a clump

of zero-temperature atoms into empty space. The “Higgs vacuum” case is much stranger;

pressure and energy density, and hence time and space, exchange roles. The speed of sound

is formally infinite, rather than zero as in the empty vacuum. Higher-derivative corrections

to the vacuum hydrodynamic equations are also considered. In the empty-vacuum case the

corrections are of quantum origin and the post-hydrodynamic description corresponds to

the Gross-Pitaevskii equation. I conjecture the form of the post-hydrodynamic corrections

in the Higgs case. In the 1+1-dimensional case the equations possess remarkable ‘soliton’

solutions and appear to constitute a new exactly integrable system.
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1 Introduction

Quite generally, any fluid medium when viewed at sufficiently long length scales can be

described by hydrodynamics. For length scales much, much greater than the mean free

path the microscopic dynamics becomes irrelevant, except for determining the equation

of state of the medium. The only relevant degrees of freedom are a density n and a flow

velocity ~v: there is some ‘stuff’ and it flows.

The idea of this paper is very simple:— to apply hydrodynamics to the vacuum. In fact,

there are two cases; (i) an “empty” vacuum, where the equilibrium density is zero, and

(ii) a “spontaneous condensate,” or “Higgs-type” vacuum, where the relativistic energy

density is minimized for some non-zero density n = nv. The actual physical vacuum

is empty of certain particle species (e.g. electrons) but is a spontaneous condensate of

others (e.g. quarks and gluons). The electroweak theory requires the vacuum to have a

nonzero vacuum expectation value for the Higgs field, which one can view as a spontaneous

condensate of scalar particles. This point has been well expressed by ’t Hooft: “What we

experience as empty space is nothing but the configuration of the Higgs field that has the

lowest possible energy. If we move from field jargon to particle jargon, this means that

empty space is actually filled with Higgs particles. They have Bose condensed.” [1, 2]

The great virtue of a hydrodynamic approach is that it is essentially independent of

the microscopic dynamics. Hydrodynamics is almost as universal and fundamental as

thermodynamics and it may yield important lessons for modern particle physics. (This

view is advocated from a different perspective in an important recent paper [3].) In

particular, hydrodynamics may perhaps provide a route to a deeper understanding of the

“Higgs-type” vacuum, a phenomenon that is a vital, but experimentally untested feature

of the Standard Model.

Hydrodynamics, of course, has great limitations. It does not tell one how to produce

or detect the excitations that it describes. Nor does it even tell one the scale of the

phenomena, which is governed by a parameter whose value is set by the microscopic

dynamics. I think it best to avoid speculations until the hydrodynamic equations and

their solutions have been thoroughly explored. That task is begun in this paper, but

much more remains to be done. For simplicity I concentrate on the 1+1-dimensional case,

though a spherically symmetric d+1-dimensional solution will be discussed in Section 6.
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2 Hydrodynamics of a normal medium

In this subsection I very briefly review the basics of hydrodynamics applied to a “normal,”

nonrelativistic medium [4, 5, 6]. I assume that the medium is “barotropic” (energy density

only a function of the pressure). This is a good approximation for many normal media

and will hold exactly in the vacuum case. As a further simplification I concentrate on the

1+1-dimensional case.

The hydrodynamic equations follow directly from conservation laws together with a

constitutive relation for the medium, leading to coupled, first-order partial differential

equations for ρ, the mass density, and v, the flow velocity. Mass conservation and momen-

tum conservation yield the fundamental equations (subscripts indicate partial derivatives:

ρt ≡ ∂ρ/∂t, etc.):

ρt + (ρv)x = 0, (2.1)

(ρv)t + (ρv2 + P (ρ))x = 0, (2.2)

where P (ρ) is the pressure as a function of density. The previous equations together imply

a simpler one, known as the Euler equation:

vt + vvx +
Px

ρ
= 0. (2.3)

Provided that the solution is everywhere smooth, one may regard Eqs. (2.3) and (2.1)

as the basic equations. (However, if the solution develops discontinuities it is essential to

remember that Eqs. (2.1) and (2.2) are the fundamental pair.)

For a normal medium the pressure varies linearly for small density disturbances:

P (ρ) = Peq + v2
0(δρ) +O((δρ)2), (2.4)

where δρ ≡ ρ− ρeq and v2
0 is a constant. For sufficiently small disturbances (δρ≪ ρeq and

v ≪ v0) the hydrodynamic equations can then be linearized, yielding

vt + v2
0

(δρ)x
ρeq

≈ 0, (2.5)

(δρ)t + ρeqvx ≈ 0. (2.6)

If the x derivative of the first equation and the t derivative of the second are combined,

so as to eliminate v, one obtains the wave equation for δρ:

(δρ)tt − v2
0(δρ)xx ≈ 0. (2.7)
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(Similarly, one can derive the wave equation for v.) Thus, in this linearized regime hy-

drodynamics reduces to acoustics. Disturbances propagate as sound waves and obey the

superposition principle. Note that the speed of sound is determined by the thermodynamic

derivative

v2
0 =

∂P

∂ρ

∣

∣

∣

∣

eq

. (2.8)

For larger disturbances, violating one or both of the conditions δρ≪ ρeq, and v ≪ v0,

nonlinear effects come into play. In the vacuum case, as we shall see, there is no linear,

acoustic regime; disturbances are always nonlinear. Insight into the nonlinear regime can

be gained by considering first the case of a pressureless fluid, where the Euler equation

reduces to Burgers’ equation (also known by many other names)

vt + vvx = 0. (2.9)

The solution, easily verified by direct differentiation, can be expressed as follows [7]: Let

the initial condition be v(x, t = 0) = V (x), then at later times

v = V (χ) with χ = x− V (χ)t, (2.10)

where the latter equation defines χ implicitly. Thus, velocity disturbances propagate

locally at the local flow velocity. If V is monotonic increasing to the right then the forward

part of the wave outruns the backward part and the disturbance simply stretches out.

However, if V is monotonic decreasing then the backward part of the wave tends to catch

up with the forward part, steepening the wave profile, as with ocean waves approaching

the shore. After a finite time the solution, rather than becoming multivalued, as with

waves at a beach, develops a finite discontinuity in v, a shock wave.

Quite generally, the solution may develop shocks (finite discontinuities in ρ and/or v)

in finite time, even from very smooth initial conditions. Requiring mass and momentum

conservation yields two equations:

shock speed =
[[ρv]]

[[ρ]]
=

[[ρv2 + P (ρ)]]

[[ρv]]
, (2.11)

where [[X]] ≡ Xright −Xleft. The shock solution, even though the first derivatives do not

exist at the shock, can be regarded as a “weak solution,” a solution in a distribution-

theoretic sense, of the original equations [8]. An important warning here is that the

mathematical notion of a “weak solution” must be applied to the fundamental mass and

momentum conservation equations, (2.1) and (2.2), and not to the Euler equation (2.3).
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At a shock the solution violates the basic hydrodynamic assumption that all relevant

length scales are much greater than the mean free path. Thus, corrections to hydrody-

namics play a role. These corrections can be developed as a series expansion in (mean free

path)/(length scale), known as the Chapman-Enskog expansion [9]. For a normal medium

the post-hydrodynamic corrections involve dissipative effects such as viscosity. The correc-

tion terms involve second derivatives and violate (macroscopic) time-reversal invariance,

since they entail entropy generation. In the pressureless-fluid case one encounters the

viscous Burgers’ equation [10].

vt + vvx = ǫvxx, (2.12)

in which the viscosity term ǫvxx smooths out the shock discontinuity. For this equation,

and more generally, one may find the shock profile by looking for “travelling wave” solu-

tions with v = v(x − at) and ρ = ρ(x − at) where a = is a constant and vL 6= vR and/or

ρL 6= ρR, where vL ≡ v(x→−∞), etc.. As ǫ → 0 the travelling wave’s profile narrows, ap-

proaching a discontinuity, and the speed a tends to the shock speed of Eq. (2.11). In this

sense, a hydrodynamic solution with shocks is still a meaningful approximate description

of the physics.

3 Constitutive relation of the vacuum medium

Henceforth a relativistic framework will be adopted; energy and energy density will include

the rest-energy (mc2) contribution and the speed of light, c, will be set to 1.

The “empty vacuum” and “Higgs vacuum” cases are illustrated in Figs. 1 and 2. In

both cases, since we are dealing with a zero-temperature medium, the pressure is given by

P = −E + n
dE
dn
, (3.13)

where E is the energy density and n is the number density of particles. Note that a precise

definition of n is not needed. What matters physically is the “constitutive relation” —

how P varies with E in the vicinity of the equilibrium state, and it is merely a convenience

to express this relation parametrically as E = E(n) and P = P (n) via the above equation.

If, for example, the underlying microscopic theory is a scalar quantum field theory, one

may take n to be proportional to φ2, where φ is the classical field, and identify E(n) with

the field-theoretic effective potential Veff(φ).

The empty-vacuum case is essentially nonrelativistic. The energy density E is domi-

nated by the mass density (times c2, but c = 1 here). However, this linear term exactly
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Ρ

E

Figure 1: The empty vacuum case; energy density as a function of mass density ρ = mn.

The equilibrium density is ρ = 0.

Σ

E

Figure 2: The Higgs vacuum case; energy density as a function of σ = 1
C

(

n
nv

− 1
)

where

C is a constant.
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cancels in the pressure (3.13), so that the small non-linear term 1

2
gρ2 is crucial [11]:

E = ρ+ 1

2
gρ2 + . . . , (3.14)

P = 1

2
gρ2 + . . . . (3.15)

The speed of sound is formally given by

v2
0 ≡ ∂P

∂E

∣

∣

∣

∣

ρ=0

=
dP

dρ

∣

∣

∣

∣

ρ=0

= 0. (3.16)

In the Higgs-vacuum case we find a “mirror-image” situation with the forms of E and

P interchanged. (For convenience I subtract a constant from the energy density so that E
vanishes in equilibrium. Since gravity is not being included in the discussion this step is

quite innocuous.)

E = 1

2
Cσ2 + . . . , (3.17)

P = σ + 1

2
Cσ2 + . . . , (3.18)

with [12]

σ =
1

C

(

n

nv
− 1

)

, (3.19)

where C is a positive constant. C is the compressibility of the vacuum medium

C =

(

n2
v

d2E
dn2

∣

∣

∣

∣

n=nv

)−1

. (3.20)

For small disturbances one has P ≫ E , so the Higgs-vacuum case is ultrarelativistic. The

speed of sound is formally infinite [14]:

v2
0 ≡ ∂P

∂E

∣

∣

∣

∣

σ=0

=
dP/dσ

dE/dσ

∣

∣

∣

∣

σ=0

=
1

0
= ∞. (3.21)

This is the first sign that something very interesting — not to say bizarre — is going on.

Note that the vanishing denominator arises because dE/dn vanishes at nv, which is the

defining property of a Higgs-type vacuum.

To anticipate (and oversimplify), the empty-vacuum case behaves like Burgers equation

vt + vvx = 0 and effects tend to “propagate” at the local flow velocity v, while the Higgs-

vacuum case behaves like the x↔ t Burgers equation vt +
1
vvx = 0 whose implicit solution

v = v(x − 1
v t) implies that disturbances tend to “propagate” at speed 1

v (that is c2/v,

restoring c). Thus, the “propagation” speed is superluminal, and can be arbitrarily large

as v becomes arbitrarily small. This is a fundamental and inescapable characteristic of
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the Higgs-type vacuum. Obviously, deep issues related to causality are involved. Note

that it is well known that an ultrarelativistic medium (where the pressure is much greater

than the energy density) can have a superluminal speed of sound [15]. Discussions of the

causality issue for an ultrarelativistic medium can be found in Ref. [16, 17]. I set this

issue aside for the present.

4 Derivation of the vacuum hydrodynamic equations

The energy-momentum tensor for a perfect fluid has the form [gµν = diag(1,−1,−1,−1)]

T µν = (E + P )uµuν − Pgµν , (4.22)

where E and P are respectively the energy density and the pressure in the co-moving

frame, and uµ is the flow 4-velocity

uµ = (u0, ~u) = (γ, γ~v), (4.23)

with γ ≡ 1/
√

1 − v2. Energy and momentum conservation equations follow from ∂µT
µν =

0 with, respectively, ν = 0 and ν = i = 1, 2, 3:

∂

∂t

[

(E + P )u2
0 − P

]

+
∂

∂xj

[

(E + P )uju0

]

= 0, (4.24)

∂

∂t

[

(E + P )u0u
i
]

+
∂

∂xj

[

(E + P )ujui + Pδij
]

= 0. (4.25)

Substituting for E and P — from either (3.14, 3.15) in the empty-vacuum case, or (3.17,

3.18) in the Higgs-vacuum case — yields the fundamental equations of “vacuum hydrody-

namics.”

Provided the solution is free of shock discontinuities and singularities such as vor-

tex lines, one may work with equivalent equations that are somewhat neater. (Cf. the

discussion below Eq. (2.3).) These neater equations arise from uν∂µT
µν = 0 (“energy

conservation in the co-moving frame”) and (gαν − uαuν)∂µT
µν = 0 (“Euler equation”)

[18]. In the empty vacuum case (in 1+1 dimensions) these equations are:

(γρ)t + (γρv)x = 0, (4.26)

((1 + gρ)γv)t + ((1 + gρ)γ)x = 0. (4.27)

Note that one could re-scale ρ to ρ̂ = gρ and hence eliminate g from the equations.

Since one is interested in small disturbances it is natural to assume that v and gρ

are small. I shall refer to this as the nonrelativistic-flow approximation (NFA). In the
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empty-vacuum case it is equivalent to nonrelativistic reduction. Restoring the factors of c

and considering 1/c to be a small parameter, ǫ, one obtains the bookkeeping rules for the

NFA [20]

v = O(ǫ), gρ = O(ǫ2),
∂

∂t
= O(ǫ). (4.28)

Applying these rules to the above equations yields

ρt + (ρv)x = 0, (4.29)

vt +
(

1

2
v2 + gρ

)

x
= 0. (4.30)

Comparing these equations with (2.1), (2.3), one sees that they correspond to an otherwise

“normal” medium with a pressure function P (ρ) = 1

2
gρ2. This is a special case of a

“polytropic gas” (P ∝ ρn) with polytropic index n = 2 [4, 5, 6, 19]. Ordinary gases are, to

a good approximation, polytropic, but with n between 1 and 5/3. However, the n = 2 case

arises in the treatment of shallow water waves (wavelengths long compared to the depth

of the water), where ρ is proportional to the vertical displacement of the water surface [5].

More relevantly, these equations also arise in the description of the free expansion

of an atomic Bose-Einstein condensate when the trapping potential is turned off [21,

22]. This fact is natural from the present point of view: the clump of atoms, localized

with a particular density distribution at t = 0, is just a particular disturbance of the

empty vacuum. Provided that the initial density distribution is sufficiently slowly varying,

its spreading will naturally be governed by the vacuum hydrodynamic equations. This

important example is discussed in more detail in Section 6.

There is an important conceptual subtlety with the NFA. The original equations are

Lorentz invariant, while the NFA equations are only Galilean invariant (i.e., only approxi-

mately Lorentz invariant for small boosts). Thus, using the NFA implies restricting oneself

to a particular Lorentz frame and its “neighbouring” frames. For a normal medium the

rest frame of the medium obviously plays this role. However, the vacuum is a Lorentz-

invariant medium; it has no rest frame. The appropriate frame for the NFA is determined

solely by the initial conditions. If in some frame the NFA conditions are satisfied at t = 0

then they will remain satisfied at all later times. One may trivially take a NFA solution

and boost it by a large Lorentz boost to obtain an approximate solution to the original

relativistic equations in which v is everywhere close to 1. Only when the range of v values

is a significant fraction of unity is it necessary to abandon the NFA and return to the

relativistic equations, (4.26, 4.27).
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In the Higgs vacuum case the pressure and the energy density exchange roles. As a

consequence, time and space in some sense exchange roles. In the 1+1 dimensional case

one obtains

(γσ)x + (γσv)t = 0, (4.31)

((1 + Cσ)γv)x + ((1 + Cσ)γ)t = 0, (4.32)

which are the same as the empty vacuum case with x ↔ t (and ρ → σ, g → C). (In

higher dimensions the “space ↔ time” interchange is obviously more complicated. See

Eqs. (6.46, 6.47) below.)

Using this symmetry one can define a consistent NFA by the bookkeeping rules:

v = O(ǫ), Cσ = O(ǫ2),
∂

∂x
= O(ǫ). (4.33)

and obtain the equations

σx + (σv)t = 0, (4.34)

vx +
(

1

2
v2 + Cσ

)

t
= 0. (4.35)

Although the flow velocity is nonrelativistic (v ≪ 1), disturbances tend to “propagate”

superluminally, at 1/v. Hence, the NFA here is not a normal nonrelativistic reduction.

The resulting equations are “anti-Galilean” invariant. Consider two Lorentz frames, with

the primed frame moving at velocity w with respect to the unprimed frame. If w is small,

O(ǫ), then the Lorentz transformations become approximately (γw ≡ 1/
√

1 − w2)

∂

∂t′
= γw

(

∂

∂t
+w

∂

∂x

)

≈ ∂

∂t
. (4.36)

∂

∂x′
= γw

(

∂

∂x
+ w

∂

∂t

)

≈ ∂

∂x
+ w

∂

∂t
. (4.37)

This is backwards with respect to the usual Galilean transformation, where the x derivative

would not change and the t derivative would change by a w term.

This is certainly strange, and takes some getting used to, but one should simply view it

as an approximation to the full Lorentz transformations, valid in the stated context. One

is used to dealing with small objects that move slowly, so that their density distributions

vary rapidly in space, but slowly in time. In the present case one is dealing with large

objects, slowly varying in space, but relatively rapidly varying in time. This is related to

the fact that the Higgs vacuum, as a spontaneous Bose-Einstein condensate, has almost

all its particles in the same quantum state. Small disturbances of this state involve vast

numbers of particles, spread over long distances, all moving nearly in lockstep, so that

the disturbance varies only slowly with position while the whole collective has the same,

relatively rapid time dependence.
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5 Shock speeds

Returning to the fundamental, relativistic energy and momentum conservation equations

one can write down the two equations governing shock discontinuities. In the empty-

vacuum case one finds

shock speed =
[[ρ(1 + gρ)γ2v]]

[[(ρ(1 + gρ)γ2 − 1

2
gρ2]]

=
[[ρ(1 + gρ)γ2v2 + 1

2
gρ2]]

[[ρ(1 + gρ)γ2v]]
, (5.38)

which in the NFA indeed reduces to the usual, nonrelativistic result (2.11) with P (ρ) =

1

2
gρ2.

In the Higgs-vacuum case the corresponding equations are

shock speed =
[[σ(1 + Cσ)γ2v]]

[[σ(1 + Cσ)γ2 − σ(1 + 1

2
Cσ)]]

=
[[σ(1 + Cσ)γ2v2 + σ(1 + 1

2
Cσ)]]

[[σ(1 + Cσ)γ2v]]
. (5.39)

Since γ2v2 = γ2 − 1, one may re-write these equations as

shock speed =
[[σ(1 + Cσ)γ2v]]

[[σ(1 + Cσ)γ2v2 + 1

2
Cσ2]]

=
[[σ(1 + Cσ)γ2 − 1

2
Cσ2]]

[[σ(1 + Cσ)γ2v]]
. (5.40)

Comparing with (5.38) one finds that the shock speeds in the two cases are reciprocals of

each other, in keeping with the x↔ t symmetry. In the NFA the equations reduce to

shock speed =
[[σv]]

[[σv2 + 1

2
Cσ2]]

=
[[σ]]

[[σv]]
. (5.41)

6 An exact solution

In 1+1 dimensions, the empty-vacuum hydrodynamic equations in the NFA, (4.29, 4.30),

are the well-known “shallow-water-wave equations,” a special case of the polytropic gas.

Thus, a general, exact 1 + 1-dimensional solution can, in principle, be obtained using the

method described in Sect. 98 of Ref. [4]. I shall not pursue that program here, but rather

I shall discuss a specific 1+1 dimensional solution that has a clear physical interpretation

in terms of the free expansion of an atomic Bose-Einstein condensate — a phenomenon

has been studied both theoretically [22] and experimentally [23]. From this solution, by

x↔ t, one can then obtain a solution to the 1+1-dimensional Higgs-vacuum hydrodynamic

equations; a solution that can then be generalized to a spherically symmetric solution in

d+ 1 dimensions.

Ref. [22] has found an exact, analytic solution of the empty-vacuum hydrodynamic

equations in arbitrary dimensions. Let us consider that solution in 1+1 dimensions [24]:

gρ = N 2

4
1
b3

(

b2 − x2

ℓ2

)

,

v = N

√

b−1
b3

x
ℓ ,







− bℓ < x < bℓ, (6.42)
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where N is a normalization constant and b is a function of t given by

√

b(b− 1) + ln(
√
b+

√
b− 1) =

N

ℓ
t. (6.43)

It is straightforward to show that b is a solution to the differential equations

db

dt
=

N

ℓ

√

b− 1

b
, (6.44)

and
d2b

dt2
=

1

2b2
N

2

ℓ2
, (6.45)

and hence to verify that Eqs. (4.29, 4.30) are exactly satisfied. Note that the normalization

constant N should be small and that the scaling of v, gρ, ∂/∂t with N is then completely

consistent with the requirements of the NFA, Eq. (4.28).

The function b(t) starts from b = 1 at t = 0 and grows linearly for large t. At t = 0 the

initial flow velocity is zero everywhere and the initial density distribution is an inverted

parabola between x = −ℓ and x = +ℓ and zero outside. The solution is self-similar, in

that the density maintains an inverted parabolic form as its spreads out. See Fig. 3.

The initial density distribution is in fact the equilibrium density distribution in a

harmonic trapping potential, in the Thomas-Fermi approximation. Thus, the solution

with these initial conditions is naturally realized in atom-trap experiments, simply by

abruptly turning off a pre-existing trapping potential [22, 23].

In Fig. 3. I have taken v = 0 outside the range −bℓ < x < +bℓ. This choice

is somewhat arbitrary because, of course, v is physically meaningless anywhere where

ρ = 0. The fundamental equations are mass and momentum conservation, (2.1) and (2.2)

with P = 1

2
gρ2, which are identically satisfied if ρ = 0, whatever v may be doing. The

discontinuity in the derivative of ρ at x = ±bℓ, whether or not one wishes to regard it as a

“shock,” is certainly a place where the hydrodynamic assumption of slow variation breaks

down. Corrections to hydrodynamics come into play to smooth out these “corners” in the

density distribution [25]. I discuss these corrections in the next section.

By making the transformation x ↔ t one can obtain an exact solution to the Higgs-

vacuum hydrodynamic equations. First note that the solution in Fig. 3 can be joined

smoothly on to its time-reversed solution at negative times. One can then take slices of

Fig. 3 at various values of x, which becomes the new t. This leads to Fig. 4 which shows

the time evolution of a σ disturbance initially concentrated around x = 0, though with

long tails out to infinity on each side, and with v = 0 everywhere. The disturbance spreads

initially somewhat like the empty vacuum case, but then develops a dip at the centre; it

11



x

t

v

x

x

t

Ρ

x

Figure 3: Density and flow velocity as functions of x and t for the solution in Eq. (6.42).
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then splits into two disturbances moving rapidly (superluminally) apart from each other,

with each one spreading out. Between them is a stretch of perfectly restored vacuum,

σ = 0.

This solution can be generalized to d+1 dimensions. The vacuum hydrodynamic

equations (4.34, 4.35) generalize to

~∇σ + (σ~v)t = 0, (6.46)

vvt + ~∇.~v + σt = 0. (6.47)

Assuming spherical symmetry, so that ~v is radial, gives

σr + (σv)t = 0, (6.48)

vr + (d− 1)
v

r
+ ( 1

2
v2 + Cσ)t = 0. (6.49)

Note that the extra term, with respect to the 1+1 dimensional case, occurs in the second,

not the first, equation. One may now proceed to look for a self-similar solution of the form

Cσ = N 2

4
1
b3

(

b2 − t2

τ2

)

,

v = Nf t
τ ,







− bτ < t < bτ, (6.50)

where b and f are functions only of r̂ ≡ N
τ r. Substituting this Ansatz in the first equation

produces a solution if

f =
b′

b
, (6.51)

where b′ ≡ db
dr̂ . Then the second equation reduces to an ordinary differential equation for

b(r̂):

b′′ + (d− 1)
b′

r̂
− 1

2

1

b2
= 0. (6.52)

In the 1+1 dimensional case this equation, multiplied through by b′, integrates up imme-

diately to yield (6.43) with t → r and ℓ → τ . In higher dimensions the equation is less

tractable, analytically. However, it is easy to find a special, power-law solution valid for

d > 4
3 :

b0 =

(

3

4

1

(d− 4
3)

)1/3

r̂2/3. (6.53)

With numerical methods one can find solutions that start from b = 1 at r̂ = 0 and

approach this behaviour at large r̂. These solutions provide the analog to the 1+1-

dimensional solution discussed earlier, except that the large-r dependence is r2/3 rather

than linear. The small-r̂ behaviour is

b = 1 +
1

4d
r̂2 +O(r̂4). (6.54)
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Figure 4: Solution to the 1-dimensional Higgs-vacuum hydrodynamic equations obtained

by x↔ t from Fig. 3. Only positive x is shown; σ is symmetric and v is antisymmetric in

x. Time is in units of ℓ/N . A qualitatively similar spherically symmetric solution exists

in higher dimensions.
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The subleading behaviour at large-r̂ is rather curious. Writing b = b0 + β and assuming

β ≪ b0 yields a linear equation for β:

β′′ + (d− 1)
β′

r̂
+

4

3
(d− 4

3
)
β

r̂2
= 0. (6.55)

Putting r̂ = ez yields an equation with constant coefficients:

β̈ + (d− 2)β̇ +
4

3
(d− 4

3
)β = 0, (6.56)

with solutions β = epz with

p =
1

6

(

6 − 3d±
√

100 − 84d+ 9d2
)

. (6.57)

For d = 8 and above the roots are real, but for d = 2, . . . 7 the roots are complex. For

d = 3 one finds

β =
c1√
r

cos(
√

71

6
ln r + c2), (6.58)

where c1, c2 are constants. The presence of the oscillatory factor is, however, all but

invisible in a plot of b(r̂). See Fig. 5. Since b is qualitatively similar to the 1+1 dimensional

case (the main difference being the r2/3 rather than linear growth at large r) the solution

for σ and v as a function of radius at various times is qualitatively similar to Fig. 4.

0 2 4 6 8 10
r`

0.5

1

1.5

2

2.5

3

3.5

bHr`L

Figure 5: The solution to Eq. (6.52) with d = 3, for b(0) = 1, b′ = 0. (r̂ = (N/τ)r).
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7 Corrections to empty-vacuum hydrodynamics

In the atomic Bose-Einstein condensate literature the empty-vacuum hydrodynamic equa-

tions arise as an approximation to the Gross-Pitaevskii (GP) equation: [25]

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V (r)ψ + U0 |ψ |2 ψ. (7.59)

The constant U0 = 4πa~2/m, where a is the s-wave scattering length is related to the

constant g introduced earlier by g = U0/m
2. The GP equation itself is valid provided

the medium is dilute; na3 ≪ 1. In the present context there is no external potential, so

V (r) = 0, and for simplicity I consider only the 1+1 dimensional case.

Substituting

ψ =

√

ρ

m
eiϕ, with v =

~

m
ϕx, (7.60)

and separating real and imaginary parts, one obtains two equations [25, 26]. One is mass

conservation:

ρt + (ρv)x = 0, (7.61)

and the other, after taking ∂/∂x, becomes

vt +

(

1

2
v2 + gρ−A

(

ρxx

ρ
− 1

2

ρ2
x

ρ2

))

x

= 0, (7.62)

with A = 1
4

~2

m2 . These two equations reduce to the hydrodynamic ones when the density

is so slowly varying that one may neglect the “quantum pressure” term proportional to

A.

Note that the corrections to empty-vacuum hydrodynamics involve third derivatives,

rather than the second derivative terms characteristic of viscosity. The corrections are

non-dissipative and preserve the time-reversal (t → −t, v → −v) and parity (x → −x,
v → −v) symmetries of the hydrodynamic equations.

The two real equations (7.61) and (7.62) are equivalent to the single complex GP equa-

tion. It is perhaps helpful to think of this system of equations as the senior member of

a family of four equation systems, the others corresponding special cases with g or A or

both set to zero; see Table 1. With g=A=0 we have the Burgers system, corresponding

to a pressureless gas of free, classical particles. This system has been studied recently

by Choquard [27], who points out the solution ρ ∝ vx [28]. Inclusion of particle interac-

tions (non-zero g) leads to the empty-vacuum hydrodynamic equations. Returning to free

particles (g = 0) but including the quantum term (non-zero A) corresponds to the free
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Burgers Empty vacuum hydrodynamics

vt +
(

1

2
v2
)

x
= 0 vt +

(

1

2
v2 + gρ

)

x
= 0

ρt + (ρv)x = 0 ρt + (ρv)x = 0

Schrödinger Gross-Pitaevskii

vt +
(

1

2
v2 −A

(

ρxx

ρ − 1
2

ρ2
x

ρ2

))

x
= 0 vt +

(

1

2
v2 + gρ−A

(

ρxx

ρ − 1
2

ρ2
x

ρ2

))

x
= 0

ρt + (ρv)x = 0 ρt + (ρv)x = 0

Table 1: Family of four equation systems related to empty-vacuum hydrodynamics. A ≡
~

2/(4m2).

Schrödinger equation, which is manifestly linear in its usual complex form. With both g

and A non-zero one has the nonlinear GP equation. Appendix A discusses the infinite

tower of conservation laws associated with these equation systems.

8 Corrections to Higgs vacuum hydrodynamics

What are the appropriate higher-derivative corrections to the hydrodynamic equations in

the Higgs-vacuum case? To answer this question, in the absence of a microscopic theory,

necessarily involves some guesswork. Nevertheless some simple physical considerations,

together with a mathematical/aesthetic criterion appear to point to a unique choice.

The physical considerations from the analogy with the empty vacuum case are (i)

one expects third-derivative, non-dissipative, time-reversal invariant terms; (ii) in the

NFA these will be time derivatives because space derivatives count as O(ǫ), (iii) the new

constant multiplying the new terms should count as O(ǫ2). However, there is a further

physical consideration that suggests that the new terms should break the x ↔ t relation

to the empty vacuum case: unlike the empty-vacuum case, v is meaningful even when

σ = 0. That is because in the Higgs case there is a pre-existing density of particles: a

disturbance that causes these particles to move non-uniformly will cost energy, even if it

nowhere changes the density at some initial instant.

Guided by these considerations and a mathematical/aesthetic criterion that the new

equations, in 1+1 dimensions, should be an integrable system, I looked for equation systems

that would generate a tower of conservation laws. In this way I was led to the following

equations:

vx +
(

1

2
v2 + Cσ

)

t
= 0, (8.63)
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σx + (σv −Rvtt)t = 0. (8.64)

The second of these equations represents momentum conservation. As discussed in Ap-

pendix A, these two equations imply other conservation laws. I conjecture that there are

an infinite number. The next of these, in its simplest form, is

(σv)x +
(

σv2 + 1

2
Cσ2 + R( 1

2
v2
t − vvtt)

)

t
= 0. (8.65)

Alternative forms can be obtained by adding a total x derivative to the density and

subtracting the corresponding t derivative from the flux. In this way one can obtain an

energy-conservation equation whose energy flux coincides with the momentum density:

(σv −Rvtt)x +
(

σv2 + 1

2
Cσ2 −R( 1

2
v2
t + 2vvtt + Cσtt)

)

t
= 0. (8.66)

It appears that the constant R must be positive, so that the new vttt term in (8.64)

has the effect of smoothing out the discontinuity in v and the corresponding “corner” in

σ in the solution shown in Fig. 4 [29].

Now, in analogy with Table 1, one has a family of four equation systems; see Table

2. The pattern is somewhat different from Table 1, where the mass-conservation equation

ρt + (ρv)x = 0 held in each case. Its x↔ t analog in Table 2 (which is not mass conserva-

tion, but momentum conservation) becomes modified in the higher-derivative cases in the

bottom half of the table.

RIF Higgs-vacuum hydrodynamics

vx +
(

1

2
v2
)

t
= 0 vx +

(

1

2
v2 + Cσ

)

t
= 0

σx + (σv)t = 0 σx + (σv)t = 0

Schrödinger analog GP analog

vx +
(

1

2
v2
)

t
= 0 vx +

(

1

2
v2 + Cσ

)

t
= 0

σx + (σv −Rvtt)t = 0 σx + (σv −Rvtt)t = 0

Table 2: Family of four equation-systems related to Higgs-vacuum hydrodynamics.

The simplest case (top left in Table 2) is denoted “RIF” for “relativistic incompressible

fluid” since it corresponds to zero compressibility, C = 0. Its Euler equation vx + vvt = 0

is ∂µu
µ = 0, the relativistic version of the usual incompressible-fluid condition ~∇.~v = 0

[4]. The higher derivative cases, for lack of better names, are denoted as “Schrödinger

analog” and “GP analog,” even though the nature of the analogy is not clear.
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I suspect that in the “Schrödinger analog” case there is some function Ψ(σ, ϕ), with

ϕt = v, that satisfies some linear equation, but I have been unable to find this function

and equation. I have found, though, that

σ = −R
2

(

vtt

vt

)

t

(8.67)

yields a solution to the σ equation of the “Schrödinger analog” system. More generally

one can add to σ a term proportional to vt, since this is a solution in the RIF case. (Cf.

[27, 28].)

Introducing a velocity potential, ϕ, with ϕt = v, in the “GP analog” system allows

one to solve the first equation for σ:

Cσ = −(ϕx + 1

2
ϕ2

t ). (8.68)

One may then use this to eliminate σ in the second equation to obtain

ϕxx + 2ϕtϕtx + ϕtt

(

3

2
ϕ2

t + ϕx

)

+ RCϕtttt = 0. (8.69)

Note that only the product of R and C appears in this equation.

9 ‘Bright’ and ‘dark’ solitons

For the GP equation it is well known that in the negative g case, corresponding to attractive

particle interactions, there are “bright soliton” solutions where the density has a sech2

form [25]. (Such solitons have been observed experimentally [30].) Remarkably, there are

similar solutions to the “GP analog” equations, (8.63, 8.64) if RC is negative. Although

this “wrong sign” case probably has no physical significance [29] these solutions are of

some interest because (i) they give support to the conjecture of integrability, and (ii) they

hint at a symmetry, more subtle than x↔ t, between the GP and “GP analog” equations.

To begin, one postulates a travelling-wave solution

v = v(x− at), σ = σ(x− at), (9.70)

where the constant a represents the soliton’s velocity. Substituting in Eq. (8.63) and

integrating with respect to the variable s ≡ x− at gives

v − a( 1

2
v2 + Cσ) = const. ≡ (1 − ξ2)

2a
. (9.71)
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The constant of integration has been written in this form for later convenience. Note that

when σ → 0 the velocity v tends to one or other of the constant values v± ≡ (1 ± ξ)/a.

Substituting Eq. (9.70) into Eq. (8.64) one obtains

σ(1 − av) = −Ra3v′′, (9.72)

where the constant of integration must be zero to have v′′ = 0 when σ = 0. Substituting

for σ from the previous equation leads to

(ξ2 − (1 − av)2)(1 − av) = −2RCa5v′′. (9.73)

Multiplying through by av′ and integrating yields

4RCa6v′2 = av(2 − av)(2(1 − ξ2) − 2av + a2v2) + const.. (9.74)

The constant of integration here must be −(1 − ξ2)2 so that v′ → 0 when v → v± =

(1 ± ξ)/a. The result then simplifies to

v′2 = − 1

4RCa6

(

(1 − av)2 − ξ2
)2
. (9.75)

Since the left-hand side is positive, a solution of this type is possible only if RC is negative.

It is convenient to define

κ ≡
√
−4RC. (9.76)

Taking the square root of Eq. (9.75) and integrating yields the solution

v =
1

a

[

1 ± ξ tanh

(

ξ

κa2
(x− at)

)]

. (9.77)

From Eq. (9.71) one obtains the corresponding form of σ:

σ =
ξ2

2Ca2
sech2

(

ξ

κa2
(x− at)

)

. (9.78)

The above solution is characterized by two parameters ξ and a and by the sign choice,

±, in Eq. (9.77). Each requires a little discussion. (i) Without loss of generality ξ may

be taken as positive. For ξ = 0 the solution becomes trivial (σ = 0 and v = constant,

representing the vacuum itself). For a single soliton one could set ξ = 1 by choosing

a frame of reference in which v− = 0. However, for the multi-soliton case, discussed

below, the extra generality of the ξ parameter is important. (ii) The a parameter can

have either sign but, for the NFA to be valid, the flow velocity must be small everywhere

and hence 1/ |a |≪ 1. Hence, the soliton moves at a hugely superluminal speed |a |≫ 1.
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The total momentum and energy carried by the soliton are, however, small and inversely

proportional to its speed and speed-squared, respectively:

Psoliton = M
(

1

a

)

, Esoliton = M
(

1

a

)2

, (9.79)

with

M ≡
∫ ∞

−∞

dxσ = ξ
κ

C
. (9.80)

These results follow from evaluating the momentum and energy densities, which turn out

to have the same sech2 form as σ; that is, using Eqs. (9.77, 9.78), one finds that

σv −Rvtt = σ/a, (9.81)

σv2 + 1

2
Cσ2 −R( 1

2
v2
t + 2vvtt + Cσtt) = σ/a2. (9.82)

(iii) Another important property of the solution is that

σ = ∓ κ

2C
vt, (9.83)

with the upper/lower sign determined by the upper/lower sign in (9.77). I shall refer to

the lower-sign choice as “solitons” and the upper-sign choice as “anti-solitons.” Solitons

have positive vt while anti-solitons have negative vt.

Multi-soliton solutions can be constructed by using the ansatz σ = κ
2C vt. Both of the

“GP analog” equations are then satisfied if

vx + vvt = −κ
2
vtt, (9.84)

which is the viscous Burgers’ equation (2.12) with x↔ t. This equation can be solved by

the Hopf-Cole transformation [10]. One defines

ψ = eϕ/κ, with ϕt = v, (9.85)

and requires ψ to satisfy the linear equation

ψx = −κ
2
ψtt (9.86)

(the diffusion equation with x ↔ t). The resulting v will then satisfy (9.84). The single-

soliton solution, (9.77, 9.78) with the lower-sign choice, satisfies the σ = κ
2C vt ansatz and

by integrating v one can find its corresponding ϕ. The appropriate constant of integration

is a function of x chosen so that ψ = eϕ/κ satisfies Eq. (9.86). Hence, one obtains the
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ψ function corresponding to a single bright soliton. By superposition, one can then write

down a general class of solutions:

ψ =
∑

n

Kn exp

(

t

κan

)

exp

(

−(x− xn)
(1 + ξ2n)

2κa2
n

)

cosh

(

ξn
κa2

n

(x− xn − ant)

)

, (9.87)

where Kn, an, ξn, and xn are arbitrary constants. By differentiation one can then obtain

v and σ as

v = κ
ψt

ψ
, σ =

κ2

2C

(

ψt

ψ

)

t

. (9.88)

Multi-anti-soliton solutions can be constructed in the same way by reversing the sign

of κ in the above. However, it is not clear if one can analytically construct solutions

involving both solitons and anti-solitons.

As noted earlier, these ‘bright soliton’ solutions are probably unphysical since they

require RC < 0 [29]. In the physical case, RC > 0, there are analogs of the ‘dark soliton’

solutions to the positive-g GP equation. One may find these by the same method as

before, but in Eq. (9.74) one now needs a different constant of integration. Choosing it

to be 2ξ2 − 1 yields a solution where v tends asymptotically to 1/a at ±∞. The resulting

solution is

v =
1

a

[

1 ±
√

4a2Cσ0 sech

(
√

σ0

a2R(x− at)

)]

, (9.89)

σ = σ0

[

1 − 2sech2

(
√

σ0

a2R(x− at)

)]

, (9.90)

where σ0 ≡ ξ2/(2a2C) is an arbitrary constant. In this solution both v and σ are constant

at ±∞ but have a localized “dip” or “bump” that moves with velocity a. The dip/bump

in v can be arbitrarily small, but σ has a dip that always goes negative, with a minimum

value −σ0. (See footnote [12] for remarks on negative σ.)

Since this ‘dark soliton’ solution does not have σ → 0 at ±∞ it does not represent a

perturbation of the vacuum. However, one can regard it as describing a localized distur-

bance in a larger, and much more slowly varying, perturbation of the vacuum. Thus, a

solution like that shown in Fig. 4, for example, could be “decorated” with one or more

‘dark soliton’ dips. Calculating the momentum and energy densities for the dark soliton

one finds, after subtracting the background values associated with σ = σ0 and v = 1/a,

that they are (σ − σ0)/a and (σ − σ0)/a
2, respectively.

Note that the above solution can always be boosted to another frame with an “anti-

Galilean” transformation to obtain another solution. In particular one can boost to a

frame where v → 0 asymptotically. In that frame v and σ become functions of t only.
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10 Discussion

There are two main points that I wish to emphasize: (i) Hydrodynamics in the empty-

vacuum case makes perfect sense and describes an experimentally observed phenomenon,

the free expansion of an atomic Bose-Einstein condensate when the atom-trap potential is

turned off. (ii) Hydrodynamics in the Higgs-vacuum case gives very strange and exciting

behaviour as a consequence of the fact that the speed of sound in the Higgs vacuum is

formally infinite. The Higgs vacuum is a medium that is both ultrarelativistic (pressure

≫ energy density) and ultra-quantum, being a Bose-Einstein condensate with almost all

its particles in the same quantum state. Not surprisingly, perhaps, its properties are very

different from those of familiar media.

The vastly superluminal speed of hydrodynamic disturbances in the Higgs case will

obviously require careful study. It may be important to point out that this phenomenon

can occur without any material particle moving faster than the speed of light; see Fig.

6. In fact, a similar issue arises even for a non-relativistic Bose-Einstein condensate [31]:

phonons with low momentum, k → 0, travel at a finite speed of sound, yet they are

made up of atoms that move with very small velocity k/m. In the non-relativistic case

a spacetime picture like Fig. 6 predicts that the number of excited atoms present at any

one time equals the ratio of the speed of sound to the speed of the individual atoms, a

result that indeed follows from the usual Bogoliubov theory. See Ref. [31] for a detailed

discussion of this point.

There is an apparent dichotomy between hydrodynamics, which implies “soft” modes

that can be excited with arbitrarily little energy, and quantum field theory which (unless

it explicitly contains massless particles) predicts an energy gap. In the empty-vacuum

case the atoms carry a conserved quantum number, so there is a superselection rule fixing

the total number of atoms. The theory splits into separate, non-communicating “sectors,”

each with a different total number of atoms. The vacuum, strictly speaking, is in the

zero-atom sector and its lowest excitation, an atom/anti-atom pair, requires an energy

2Mc2, where M is the mass of the atom. However, if one is given a system with N atoms

then the relevant “vacuum” state — the lowest energy state with N atoms — has those

atoms existing but dispersed in all directions to infinity (assuming a repulsive interaction

g > 0). This “vacuum” can be perturbed by bringing some or all of these atoms to finite

distances from each other, and this may be done with arbitrarily little energy. In this

sense, there are soft, hydrodynamic modes.

The situation for the Higgs vacuum is different. No conserved quantum number is

23



Figure 6: Possible spacetime picture of a superluminal phonon-like excitation. There are

multiple pair-creation and pair-annihilation events organized so that the collective motion

is fast L/τ ≫ c while the individual particles move slowly (L/(2T ) < c).

carried by the particles that spontaneously condense (the quanta of the scalar field that

acquires a vacuum expectation value). According to conventional theory, the only excita-

tions are massive (quasi)particles, and hence the system has a gap. However, the equation

determining the inverse propagator at zero momentum actually has two solutions; M2
h ,

where Mh is the Higgs mass, and zero [32]. This fact suggests that there may be some

deeper, underlying theory that possesses gap-less, hydrodynamic modes. In the limit

where this theory reduces to the conventional field theory, the realm of these hydrody-

namic modes would shrink to pµ = 0. Studying the hydrodynamic equations is then, I

believe, a window into this unknown, deeper theory.

An example of what I have in mind is provided by the sine-Gordon equation [33]

∂2θ

∂t2
− ∂2θ

∂x2
+ sin θ = 0. (10.91)

For small θ this equation reduces to the Klein-Gordon equation and hence the dispersion

relation is ω(k) =
√

1 + k2. One might therefore think that the spectrum of excitations

necessarily has a gap. However, the non-linear equation possesses “breather” solutions

θ(x, t) = 4 arctan

(

ǫ sin(t/
√

1 + ǫ2)

cosh(ǫ(x− x0)/
√

1 + ǫ2 )

)

, (10.92)

whose fundamental frequency, ωb = 1/
√

1 + ǫ2 < 1 lies in the gap. (The sine-Gordon

“breather” is unique in being stable. Similar breathers exist in the φ4 case but they decay
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due to e−1/ǫ couplings to linear, plane-wave modes [34].) The moral is that even if the

linearized theory has only massive excitations, one cannot discount the possibility of soft,

non-linear modes.

In this paper only the classical hydrodynamical equations have been considered. A

task for the future is to re-cast the equations into Hamiltonian form so that one can apply

canonical quantization. For a normal medium in the linear, acoustic regime this procedure

would take one from classical sound waves to phonon quanta. For the vacuum case the

quantization will be inherently non-linear.
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Appendix A: Towers of conservation laws

For each of the 1 + 1 dimensional equation systems in Table 1 there is an infinite tower of

conservation laws

D
(n)
t + F (n)

x = 0, (10.93)

where D is a density and F is the associated flux. Each D(n) will be normalized such that

its ρvn−1 term has unit coefficient. For n = 1, 2, 3 the conserved quantities (
∫

dxD(n)) are

mass, momentum, and twice the nonrelativistic energy. Of course, one has the freedom

to add a total x-derivative to a density; i.e., D′ = D + Γx and F ′ = F − Γt satisfy

D′
t + F ′

x = 0.

The Burgers case is trivial, since it corresponds to non-interacting classical particles.

One has simply

D(n) = ρvn−1, F (n) = ρvn. (10.94)

That is, not only are mass, momentum, and (nonrelativistic) energy (integrals of ρ, ρv,

and 1

2
ρv2) conserved, but — since v is constant for a free particle — so is the integral

of ρf(v) for any function of v. (Thus, the set of conservation laws above is really only

a subset of a continuous infinity of conservation laws. I focus on this subset because it

generalizes to the other equation systems.)

The empty-vacuum hydrodynamic equations include the effects of particle interactions

(repulsive for g > 0). The D’s and F ’s are now polynomials in ρ and v:

D(n) = vn+1dn(gρ/v2)/g, F (n) = vn+2fn(gρ/v2)/g (10.95)

where the functions dn(s) and fn(s) (with s = gρ/v2) satisfy

(n+ 1)dn = f ′n − (1 − 2s)d′n, (10.96)

(n+ 2)fn = (1 + 2s)f ′n − (1 − s)d′n, (10.97)

whose polynomial solutions are

dn(s) =

[(n+1)/2]
∑

i=1

(n− 1)!

(n− 2i+ 1)!

1

i!(i − 1)!
si, (10.98)

fn(s) =

[(n+2)/2]
∑

i=1

(n+ 1 − i)
(n− 1)!

(n − 2i+ 2)!

1

i!(i− 1)!
si. (10.99)

Two noteworthy relations are

D(n) =
1

n

∂D(n+1)

∂v
, (10.100)
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F (n) = 1

2
(D(n+1) + vD(n)). (10.101)

In the Schrödinger case one goes back to free particles, but now they are quantum

mechanical. The D’s and F ’s now involve higher derivatives. They can be expressed

compactly in terms of the wavefunction ψ. Defining ψ[N ] as the Nth derivative ψxx...x one

has

D(2N+1) = ψ∗
[N ]ψ[N ], (10.102)

F (2N+1) = D(2N+2) =
−i
2

(

ψ∗
[N ]ψ[N+1] − ψ∗

[N+1]ψ[N ]

)

, (10.103)

F (2N) =
1

4

(

2ψ∗
[N ]ψ[N ] − ψ∗

[N−1]ψ[N+1] − ψ∗
[N+1]ψ[N−1]

)

. (10.104)

By substituting ψ =
√

ρ/m eiϕ with v = ~

mϕx one can obtain the D’s and F ’s in terms

of ρ, v, and their derivatives, though the expressions quickly become cumbersome. (See

Table 3 with g = 0 for the first few.) There is a straightforward generalization of these

results to d+1 dimensions, with the D(n)’s being alternately scalar and vector densities and

the F (n)’s correspondingly vector and tensor fluxes. I have not seen these conservation

laws for the free Schrödinger equation in any quantum-mechanics textbook, although they

surely must be known.

In the Gross-Pitaevskii (GP) case one has both quantum effects and interactions. It

is a highly non-trivial property of this equation, related to its integrability, that it admits

an infinite number of conservation laws in the 1 + 1 dimensional case [35]. The first four

of these are given explicitly in Table 3.

n D(n) F (n)

1 ρ ρv

2 ρv ρv2 + 1

2
gρ2 −A

(

ρxx − ρ2
x

ρ

)

3 ρv2 + gρ2 + Aρ2
x

ρ ρv3 + 2gρ2v + A
(

3ρ2
x
v

ρ + 2ρxvx − 2ρxxv
)

4 ρv3 + 3gρ2v ρv4 + 9
2gρ

2v2 + g2ρ3

+ A
(

3ρ2
x
v

ρ + 2ρxvx − 2ρxxv
)

+ A
(

−5ρxxv
2 + 6ρ2

x

ρ v
2 + 4ρxvvx + 2ρv2

x − 2ρvvxx

)

Ag
(

9
2ρ

2
x − 3ρρxx

)

+ A2
(

−2ρxxxρx

ρ + 2ρ2
xx

ρ + ρxxρ2
x

ρ2 − ρ4
x

ρ3

)

Table 3: The first four conservation laws, Dt + Fx = 0, for the GP equation system.

A = ~
2/(4m2). D(1) is the mass density, D(2) is the momentum density, and D(3) is twice

the nonrelativistic energy density.
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I turn now to the equation systems of Table 2. The RIF and Higgs-vacuum hydrody-

namics cases are related by x ↔ t to the Burgers and empty-vacuum cases, respectively

and so inherit the same set of conservation laws as

D(n)
x + F

(n)
t = 0. (10.105)

(Note that I choose not to switch the names D and F , so one needs to remember that now

D is a flux and F is a density.)

For the “Schrödinger analog” case (R 6= 0, but C = 0) it is easily verified that there

are an infinite number of conservation laws that need only involve σ, v, vt, vtt:

Fn = σvn + 1

2
R
(

(n− 1)2vn−2v2
t − 2vn−1vtt

)

, (10.106)

Dn = σvn−1 + 1

2
R(n− 1)(n − 2)vn−3v2

t (10.107)

(One may of course modify these by adding a total t-derivative to D and subtracting the

corresponding x-derivative from F . I have chosen to do this for the n = 2 case in Table 4

in order for D(2), interpreted as the energy flux, to equal the momentum density F (1).)

Table 4 shows the first four conservation laws for the “GP analog” system.

n D(n) F (n)

1 σ σv −Rvtt

2 σv −Rvtt σv2 + 1

2
Cσ2 −R( 1

2
v2
t + 2vvtt + Cσtt)

3 σv2 + Cσ2 + Rv2
t σv3 + 2Cσ2v + R(2vv2

t − v2vtt + 2C(σtvt − σvtt))

4 σv3 + 3Cσ2v σv4 + 9
2Cσ

2v2 + C2σ3 + R(9
2v

2v2
t − v3vtt)

+ R(3vv2
t − 4Cσvtt) + RC(6σtvvt − 3σv2

t − 10σvvtt)

+ 2R2Cv2
tt + RC2(2σ2

t − 4σσtt)

Table 4: The first four conservation laws, Dx + Ft = 0, for the “GP analog” system

(Higgs-vacuum hydrodynamics plus higher-derivative corrections). F (1) is the momentum

density and F (2) is the energy density.
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[10] See, for example, J. V. José and E. J. Salatan, Classical Dynamics: a contemporary

approach (Cambridge Univ. Press, 1998) Sec. 9.5.2.

[11] g may be negative, but then higher-order terms in E are crucial to ultimate stability.

[12] Convexification of the effective potential (see, e.g., ref [13]) is an issue if σ goes

negative; i.e., n < nv. Convexification implies that for negative σ the energy density

should really be flat, E = 0. However, if the timescale involved is not enormously long

the expression E = 1

2
Cσ2 should still be appropriate in a metastable sense, akin to

briefly supercooling a system below its thermodynamic phase transition. This issue

does not arise for the solution in Section 6, which has σ ≥ 0 everywhere.

29

http://arXiv.org/abs/hep-ph/0407101


[13] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, (Addison-

Wesley, 1995), p. 368.

[14] P. M. Stevenson, in Proceedings of the Second Meeting on CPT and Lorentz Symmetry,
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