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ABSTRACT 

In this analysis a generalized method is developed 

for determining the optimum stage-weight distribution 

for multistage rockets.    Inclusion of the variations in 

structural factors with stage weights in the optimization 

process is shown to lead to a more generalized set of 

optimum conditions.    Expression of all rocket weight 

parameters in terms of the stage weights allows for 

convenient optimization as well as for a comparison with 
previous optimization methods. 

This approach permits improved optimum design 

over existing methods for maximizing payload ratios 

for given ranges and for maximizing ranges for given 

payload ratios.    An evaluation of previous methods is 

included for comparison purposes, and the limitations 
of these previous methods are discussed. 
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I.    INTRODUCTION 

In recent years,  the optimization of multistaged rockets has received 

considerable attention.    Since the performance of missiles and space vehicles 

is sensitive to small changes in design,  optimization procedures are of great 

importance.    In References 1 through 11 methods were developed for deter- 

mining "optimum" stage mass ratio distributions.    None of these methods, 

however,  allowed for variations of structural factor with stage weight.    Conse- 

quently,  the referenced methods do not yield truly optimum stage mass ratio 

distributions. 

The purpose of this paper is first,  to derive,  in terms of the stage weights, 

a more general design optimization that allows for variations of structural 

factors with stage weights,  and    second,  to evaluate the limitations of previous 

design criteria. 
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NOMENCLATURE 

P 

W 

W 

V 

L 
(1) 

o 

bo 

J 

R 

D and B 

* 

W. 
l 

w 
pi 

w(i) 
o 

N 

iw i 

~Sv. W 
i 

Payload ratio, as defined by Equation (2) 

Payload weight 

Gros» vehicle weight 

Burnout velocity 

Specific impulse of the j     «u *e 

Acceleration of gravity 

Mass ratio of j     stage 

Range 

Empirical parameters for range Equation (1) 

Lumped velocity requirement term 

Structural factor of i     stage 

Weight of the ith stage 

:th 

Wbo(i> 

Propellant weight of the i     stage 

th 
Gross weight of i     stage as defined by equation (11) 

Total number of stages 

Partial derivative of f with respect to W., keeping a. fixed 

Partial derivative of • with respect to o\,  keeping W.  fixed 

Burnout weight of the i1   stage, as defined by Equations (12) and (13) 

* 
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II.    OPTIMIZATION PARAMETERS 

A.    Performance Parameters 

The performance capability of a multistage rocket vehicle car. be described 
by two equations. 

wd) 

(1) P   =       ° 
L 

N 
V,      =    S    I. g In r. - 6V (2) 

bo        j=l   J J 

where   6 V represents the velocity losses associated with gravity and drag.   The 

drag losses are primarily dependent upon the initial thrust-to-weight ratio,  N , 
and on the quantity,   W    '/C^A. 

Equation (2) can be rewritten in terms of range,  R,  for a ballistic missile: 
(Reference 12) 

R   =   D (3) 

(1) 
where   B   is very insensitive to changes in   N     and   W      /C-.A,  while the 
parameter   D   is fairly sensitive to such changes. 

Let 

N     I. 

♦ * TT V (4) 
j = l   J 

and the theoretical velocity, 

Vt   =   Vbo+ 6V (5) 
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Then from Eqs.  (2).  (3),  and (4), 

ML i 

or 

Thus,  for a given initial thrust-to-weight ratio and mission,  the velocity 

requirements may be lumped into a fixed single term,   0.    The range equation 

already provides for velocity losses in the empirical constants   D   and   B used 

for any particular configuration. 

When there are at least two stages and when all the specific impulses are 

known,    P   and   f   do not uniquely define the mass ratios of the various stages. 

Consequently,  proper selection (optimization) of mass ratios for either maxi- 

mum payload at a given range or maximum range at a given payload ratio is 

required. 

B.    Structural Factor Parameter» 

The structural factor,   o^,   for the i     stage is given by: 

W, - W 
1        pi 

*i -      wi <8> 

Expressed in terms of the weight of the i     stage,  the following scaling laws 

are assumed to hold: 

n-1 
*t   ■   CJWJ1 (9) 

where   C    and   n.   are empirical constants for each stage subject to the selection 
of propellent feed systems,  auxiliary systems, etc. 
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C,    Use of Stage-Weight Parameter» 

The mass ratio of the i     stage can be defined by: 

w(i) w(i) 

r.   =   —ST.   =        /.,    °  (10) 

bo o pi 

where 

Wo      =   j?i Wj + WL <U> 

and 

W. (i)   =   W(f> - W . (12) bo o pi *     ' 

From Eqs. (8), (11), and (12), the following useful relations can be derived for 

an   N-stage rocket: 

W. (1)   =   f,W,   + W(E)   =   <r, W(1* T (1 - OWt2* bo 11 o lo 1      o 

WJ2)   =   *> W, + W*3)   =   <r, W(2) + (1 - <r,)W(3* bo 22 o 2o 2      o 

(13) 

WboN) =   *N WN + WL   -   ^N WoN) + (1 " *N)WL 

Combining Eqs.  (9), (10), (11) and (13). 

N 
s, w, + w, 
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I 
Substituting (11) into (1), 

N 

P  «  g    ^  L {15) 

where the payload ratio is now expressed in terms of the stage weights.    By 

substituting (14) into (6) or (7),   *    can also be expressed in terms of the stage 
weights: 

N   ' N 

♦ ■ "i—ft Y WL— (lM 
k?,VCkWk      + j,|+l V*L 

c 
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III.   THE GENERAL OPTIMIZATION 

A.    Lagrangian Multiplier Technique 

A necessary condition that a function f(x., x« x.,) of N variables 

x., x.,.,.,  x-j   have a stationary value is that 

df   =   |L dx, +  £- dx, + ...  +TCT- d*n   r   0 <17> 31^ dxl +   KJ dx2 + •••  + T^ ^ 

for all permissible values of the differentials   dx., dx2 ^N* **» nowevcr» 

the   N   variables are not independent,  but are related by another condition of the 

form ij/(x.,  x?,...,  Xj.) = 0,    then the procedure of introducing the so-called 

Lagrange multiplier may be conveniently employed: 

Now if  X   is so chosen that 

8f    *  X  8*    -   0 
3x7     **T " 

3x7 + ^ - ° 

(18) 

3xN 8xN 

4*(xj. x2 , xN) s   0 

then the necessary condition for an extremum of   f (x.,  x, X-.) will be 

satisfied.    The quantity   X   is known as a Lagrangian multiplier. 
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B.     Application of the Lagrangian Multiplier Technique to 
Optimum Rocket Design 

The Lagrangian multiplier method may be used to optimize   P   subject to a 

fixed   f   or vice versa.    In fact the partial differential equations in (18) would 

be the same for either optimisation; only the constraining equation would be 

different. 

In general,  the conditions (18) applied to optimum stage weights become: 

dp       .8* rt 

JW7 +x Wr = ° 
2 2 

(19) 

8P X        •# A 

and either   0   or   P = constant 

C.     Criticism of Previous Methods 

The optimization conditions expressed by (19) guarantee a minimum   P   for 

constant   0   or vice versa,   since variation of structural factor with stage weight 

is included in the optimization process.    In previous methods (References 1 to 

11),  this variation was not included.    To evaluate these methods,   A   can be 
re-expressed as: 

♦ = *<wr w2 WN ri« V   •• • V <20> 
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Then: 
8* 8<j> do; 

./^L.3^ 
96 86 

Wwl   =   8w7 
B< do% 

r2     «Vw,3*! 

(21) 

B6 36 
5^ ■ 8WN 

do; N 

Vf^^N 

Equations (19) then become 

8P 
8lVJ" + X 

3P   4.   X aw"/ X 

+ x»t 

34> 

aw2 
+ x *£. 

'2          ^ 

dr. 

w2^I 

=   0 

r    0 

8P 
8"w + x 

N ^vx^lw„^5" 

(22) 

and either   P   or   6   constant. 

When no variation of structural factor with stage weights is considered,  the 

corresponding expressions for "optimization" can easily be shown   to be 

See Appendix 
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Jß 0P w r*1^" 

»p 
4W2 ♦x^£ 

»P 
♦xTlk 

(2i, 

N 

C 

and either   P   or   $ = constant. 

Since relations (22) are the true optimization conditions then,  in order 

for relations (23) to be optimum,  (22) and (23) must be compatible.    It is clear 

that,  in order for (22) and (23) to be compatible,  the relations 

dv 1 

ljWj d~W7 
=   0 

"^Iw^ =   0 

(24) 

ÜL 
do- N 

rN 

Wj^"3^ 
=   0 

must hold. 

C 
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Since (24) cannot be valid,   except in the nonrealistic case where the 

structural factor does not vary with stage weight,   Eqs.   (22) and (23) are not 

compatible.    Hence,  Eqs.  (23) do not represent a true optimization criterion 

for realistic rocket design.    The actual discrepancy in the design criterion in 

using (23) rather than (22) will depend upon the relative magnitudes of the 

terms in (22) that have the coefficient   X.    If the second term of coefficient   X 

in (22) is negligible compared to the first term of coefficient   X,  then (23) 

represents a realistic optimization.    In general,  however,  this is not the 

case. 

D.     Reduction of the Optimization Equations to Simpler Form 

From Eq.  (15),  for fixed WL: 

8P 3P BP 1 0ci 

Substituting (25) into (19) and eliminating common terms,   the optimization 

equations reduce to: 

8    1 v"2 ""N 

and either   0   or   P = constant 
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IV.    APPLICATION TO OPTIMUM THREE-STAGE ROCKET DESIGN 

For a three-stage rocket.  Eqs. (15) and (16) become 

p   s    _J 2
W     3   h (27) 

and 

Wj + w2 + w3 + wL   X1! f w2 + w3 + wL Yz /"  w3 + wL Y3 

^C1W?+W2 + W3 + VVJ    VC2W22 + W3 + WJ    VC3W33 + WL> 
(28) 

Accordingly, 

*   s ^ijn - "!> ct 
w? n1 - "i ct w"1  ) <w2 + w3 + WL)J 

1 (Wl * W2 * W3 + WJ (Cl W? + W2 + W3 + W
L) 

"3^ 
i1(c1w"1"1.i)w] 

(Wl + W2 * W3 + W J (Cl W? * W2^3 * W
L) 

f n2    f VM 1 
►   »M*1 -"2>C2 W2    +11 -nZC2W2       7fW3 * WL>J 

(w2 + w,4wj (c2w2
2,w3 + wL) 

(30) 
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n.-l 

5^ 
^l(ClWir   -l)Wl 

K + w2 ♦ w3 + wL )(C.w? + w2 ♦ Wj ♦ wL 
) 

(C2W?"  "1)W; ^2l
C2W2 

(w2 ♦ w3 + wL) (c2 w
n

2
z + w3 ♦ wL) 

'sit1 - "3)C3W33 + (* ' n3C3W3rl)WJ 0 

(
W

3 
+
 
W
J(

C
3
W

3
3
 

+
 

W
L) 

(31) 

Substituting  (29),  (30)t  and (31) into the optimization equations. 

and factoring out   0   yields two independent nonlinear equations: 

'I('-"ICIW"'~') 

('•ci*?1 
n,-l /   W. + W, + W, + W, 

n 
1 

=   I. 

ClWr+W2 + W3 + WL> 

l-n2C2W2
2 

n2 
II 3 Li 

(32) 
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£ 
2   [**!"?) 

i-c2w2 
-I /        W2 ♦ W3 ♦ WL 

C2W2      * W3 * W« 

=   I. 1 - *» C W 1        3^3*3 
«,-l| w3^wL 

c,w 
3    3 ♦ W 

(33) 

C 

Equations (32) and (33) together with the constraint equation,   ♦  or  P   = 

constant, constitute three equations in terms of the three unknowns 

Wr W2, and w*r   For specified sets of values of I., l^ ly C{t Cr Cj. 

n., n,, n-, and  *  or  P  (depending upon which type of optimisation is 

desired), the three equations can be solved by iteration techniques to yield 

optimum values of W     and  W     and  W      By employing Equations (11) and 

(13), the other rocket parameters can also be determined. 

( 
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V.    APPLICATION TO OPTIMIZING TWO-STAGE ROCKET DESIGN 

Analogous to the three stage optimization, the optimization conditions for a 

two stage rocket become: 

öwT 
(34) 

and   ♦ or   P   *   constant 

which yield: 

T fr -ni ciwini" 3 
1 ('-civ*-1) 

i-c^V» 
iCjWj11! + W2 + WL 

=   I, 1  - n2 C2W2
n2 

W2  + WL 

lc2 w2
n* + W 

(35) 

Equation (35) together with the comraint,   4> or   P   =   constant, can be solved 

by iteration to yield optimal values of   W.   and   W.. 
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VI.   APPLICATION TO N-STAGE ROCKET OPTIMIZATION 

If iterative technique« can be expanded to include solving   N   simultaneous 

nonlinear equations, then the process described above can be extended to any 

number of stages.   In the case of a large number of stages,  computerized 

random search techniques might be employed to solve for optimum values of 

the stage weights.    Once the optimum stage weights are obtained, these values 

can be substituted into Eqs.  (11) and (13) to solve for the other rocket 

parameters. 

C 

c 
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APPENDIX 

Further comparison with prorieu* roethodi writing   + lor a fchroa »tag« 
rocket ia term« of » ., r      *ad r 

«TJWJ ♦ w2 +w3 +wL 

I. I, 
/ w2 + w3 ♦ wL \ * f w3 + wL 

*x (34) 

Then 

8 I|*C1 - V|Wi+ W3 + WL> 
r   " i*lwl ♦ w2 ? w3 ♦ wL)<w14 w2 ♦ w3+ wL 

"SWT 

?   ♦(«Tj   .   l)Wj 

Z r     *   <'lWl + W2 + W3 + WL^W1 * W2 4 W3 * WÜ 

I2*(I - r2)(W3 ♦ WL) 
4 (<r2W2 + W3 4 WLJ(W2 + W3 + WLJ 

(37) 

(38) 

and 

Wj- 
1^ - l)Wj 

"f^s4W2,w3,wL)(w1 + w2 + w3 + wLi 

I2^«r2-UW2 

* K2W2 fWj + wL)(w2; w3 ♦ wL) 

4 (*3w3 + wL)(w3 + WLJ (39) 

Subotuting (37),  (38) and (39) into the condition« from (23): 

T*7    • JfrJ, ■ rrj- 
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result in: 

r! (^^7^2 + W3 * WL 

=   I. 

w2 ♦ w3 ♦ wL 

(40) 

Equation (40) represent» the relation« corresponding to previous methods (1-11) 

for design criteria.    By using Eqs. (11) and (13), then Eqs. (40), (32), e>nd (33) 

can be written for comparison purposes in terms of the mass raftie*     Equation 

(40) then becomes 

Ij(l -e-jr,)   =   12(1 .^2r2) I3(l - r3r3) (41) 

which is the more familiar form usually seen in the references listed above. 

Equations (32) and (35) become 

x 

(1 - n. svj 

I. 
(l-n2r) 

(T^TT (1 ' Vz1 

I2(l - n2r2 r2) 

Ij(l - n3a3r3) 

(42) 

(43) 

or combining (42) and (43); 

0 - n, o-,) 
I 1 "1 (1 - cr.r.)   =   1,(1  - n,   <r, rj   = 11 2    2'2' 

(1 -n, ^r3) 

I2d 
13(1 -•«,) 

' n2) * n2 (1 -»2r2T 
X 

(44) 

which represent more inclusive optimization conditions. Comparison erf (41) 

with (44) indicates the significant difference between previous "Optimisation" 

and the more realistic optimization criteria. 


