

OPTIMUM STAGE-WEIGHT DISTRIBUTION OF MULTISTAGE ROCKETS

3 February 1960

Systems Design and Analysis Department
15DA-60-3

SPACE TECHNOLOGY LABORATORIES, INC .
P.O. Box 95001

Los Angeles 45, California

Abstract

In this analysis a generalized method is developed for determining the optimum stage-weight distribution for multistage rockets. Inclusion of the variations in structural factors with stage weights in the optimization process is shown to lead to a more generalized set of optimum conditions. Expreseion of all rocket weight parameters in terms of the stage weights allows for convenient optimization as well as for a comparison with previous optimization methods.

This approach permits improved optimum design over existing methods for maximizing payload ratio for given ranges and for maximizing ranges for given payload ratios. An evaluation of previous methods is included for comparison purposes, and the limitations of these previous methods are discussed.

CONTENTS

Page
ABSTRACT ii
I. INTRODUCTION 1
NOMENCLATURE 2
II. OPTIMIZATION PARAMETERS 3
A. Performance Parameters 3
B. Structural Factor Parameters 4
C. Use of Stage-Weight Parameters 5
III. THE GENERAL OPTIMIZATION 7
A. Lagrangian Multiplier Technique. 7
B. Application of the Lagrangian Multiplier Technique to Optimum Rocket Design 8
C. Criticism of Previous Methods. 8
D. Reduction of the Optimization Equations to Simpler Form 11
IV. APPILICATION TO OPTIMUM: THREE-STAGE ROCKET DESIGN 12
V. APPLICATION TO OPTIMIZING TWO-STAGE ROCKET DESIGN 15
VI. APPLICATION TO N-STAGE ROCKET OPTIMIZATION 16
REFERENCES 17
APPENDIX 18

I. INTRODUCTION

In recent years, the optimization of multistaged rockets has received considerable attention. Since the performance of missiles and space vehrcles is sensitive to small changes in design, optimization procedures are of great importance. In References 1 through 11 methods were developed for determining "uptimum" stage mass ratio distributions. None of these methods, however, allowed for variations of structural factor with stage weight. Consequently, the referenced methods do not yield truly optimum stage mass ratio distributions.

The purpose of this paper is first, to derive, in terms of the stage weights, a more general design optimization that allows for variations of structural factors with stage weights, and second, to evaluate the limitations of previous design criteria.

NOMENCLATURE

P Payload ratio, as defined by Equation (1)
$W_{L} \quad$ Payload weight
$w_{0}^{(1)} \quad G r o s e$ vehicle weight
$V_{\text {bo }} \quad$ Burnout velocity
$I_{j} \quad$ Specific impulee of the $j^{\text {th }}$ staze
g Acceleration of gravity
$r_{j} \quad$ Mass ratio of $j^{\text {th }}$ atage
$R \quad$ Range
D and B Empirical parameters for range Equation (3)

- Lumped velocity requirement term
$\sigma_{i} \quad$ Structural factor of $i^{\text {th }}$ stage
$W_{i} \quad$ Weight of the $i^{\text {th }}$ etage
$W_{\text {pi }} \quad$ Propellant weight of the $i^{\text {th }}$ stage
$w_{0}^{(i)} \quad$ Grose weight of $i^{\text {th }}$ stage as defined by equation (11)
N
$\left.\frac{\partial_{0}}{\partial W_{i}}\right|_{\sigma} \quad$ Partial derivative of ϕ with respect to W_{i}, keeping σ_{i} fixed
$\left.\frac{\theta_{\varphi}}{\partial \sigma_{i}} \right\rvert\, W_{i} \quad$ Partial derivative of with respect to σ_{i}, keeping W_{i} fixed
$W_{b o}{ }^{(i)} \quad$ Burnout weight of the $i^{\text {th }}$ stage, as defined by Equations (12) and (13)

II. OPTIMIZATION PARAMETERS

A. Performance Parameters

The performance capability oi a multistage rocket vehicle car. be described by two equations.

$$
\begin{gather*}
P=\frac{W_{0}^{(1)}}{W_{L}} \tag{1}\\
V_{b o}=\sum_{j=1}^{N} I_{j} g \ln r_{j}-\delta V \tag{2}
\end{gather*}
$$

where $\delta \mathrm{V}$ represents the velocity losses associated with gravity and drag. The drag losses are primarily dependent upon the initial thrust-to-weight ratio, N_{o}. and on the quantity, $W_{0}^{(1)} / C_{D} A$.

Equation (2) can be rewritten in terms of range, R, for a ballistic missile: (Reference 12)

$$
\begin{equation*}
R=D\left[\prod_{i=1}^{N} r_{i}^{I_{i} / B}-1\right] \tag{3}
\end{equation*}
$$

where B is very insensitive to changes in N_{0} and $W_{0}^{(1)} / C_{D} A$, while the parameter D is fairly sensitive to such changes.

Let

$$
\varphi \quad \phi=\prod_{j=1}^{N} r_{j}^{I_{j}}
$$

and the theoretical velocity,

$$
\begin{equation*}
v_{t}=v_{b o}+6 v \tag{5}
\end{equation*}
$$

Then from Eqs. (2), (3), and (4),

$$
\begin{equation*}
\phi=\prod_{j=1}^{N} r_{j}^{I_{j}}=e^{\frac{V_{t}}{g}} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi=\prod_{j=1}^{N} r_{j}^{I_{j}}=\left(\frac{R+D}{D}\right)^{B} \tag{7}
\end{equation*}
$$

Thus, for a given initial thrust-to-weight ratio and mission, the velocity requirements may be lumped into a fixed single term, ϕ. The range equation already provides for velocity losses in the empirical constants D and B used for any particular configuration.

When there are at least two stages and when all the specific impulses are known, P and do not uniquely define the mass raticis of the various stages. Consequently, proper selection (optimization) of mass ratios for either maximum payload at a given range or maximum range at a given payload ratio is required.
B. Structural Factor Parameter

The structural factor, σ_{i}, for the $i^{\text {th }}$ stage is given by:

$$
\begin{equation*}
\sigma_{i}=\frac{W_{i}-W_{P_{i}}}{W_{i}} \tag{8}
\end{equation*}
$$

Expressed in terms of the weight of the $\mathrm{i}^{\text {th }}$ stage, the following scaling laws are assumed to hold:

$$
\begin{equation*}
\sigma_{i}=c_{i} w_{i}^{n_{i}-1} \tag{9}
\end{equation*}
$$

where C_{i} and n_{i} are empirical constants for each stage subject to the selection of propellant feed syetems, auxiliary systeras, otc.
C. Use of Stage-Weight Parameters

The mase ratio of the $i^{\text {th }}$ stage can be defined by:

$$
\begin{equation*}
r_{i}=\frac{w_{0}^{(i)}}{w_{b 0}^{(i)}}=\frac{w_{0}^{(i)}}{w_{0}^{(i)}-w_{p i}} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{0}^{(i)}=\sum_{j=i}^{N} w_{j}+w_{L} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{b o}^{(i)}=w_{0}^{(i)}-w_{p i} \tag{12}
\end{equation*}
$$

From Eqs. (8), (11), and (12), the following useful relations can be derived for an N -stage rocket:

$$
\begin{align*}
& \mathrm{w}_{b 0}^{(1)}=\sigma_{1} \mathrm{w}_{1}+\mathrm{w}_{0}^{(2)}=\sigma_{1} w_{0}^{(1)}+\left(1-\sigma_{1}\right) w_{0}^{(2)} \\
& \mathrm{w}_{\text {bo }}^{(2)}=\sigma_{2} \mathrm{w}_{2}+\mathrm{w}_{0}^{(3)}=\sigma_{2} w_{0}^{(2)}+\left(1-\sigma_{2}\right) w_{0}^{(3)} \\
& \tag{13}\\
& \mathrm{w}_{\text {bo }}^{(N)}=\sigma_{N} w_{N}+W_{L}=\sigma_{N} w_{0}^{(N)}+\left(1-\sigma_{N}\right) w_{L}
\end{align*}
$$

Combining Eqs. (9), (10), (11) and (13),

Substituting (11) into (1).

where the payload ratio is now expressed in terme of the stage weights. By substituting (14) into (6) or (7), can also be expressed in terms of the stage weights:

$$
\begin{equation*}
\phi=\prod_{k=1}^{N}\left(\frac{\sum_{j=k}^{N} w_{j}+w_{L}}{c_{k} w_{k} n_{k}+\sum_{j=k+1}^{N} w_{j}+w_{L}}\right)^{I_{k}} \tag{16}
\end{equation*}
$$

III．THE GENERAL OPTIMIZATION

A．Lagrangian Multiplier Technique

A necessary condition that a function $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ of N variables $x_{1}, x_{2}, \ldots, x_{N}$ have a stationary value is that

$$
\begin{equation*}
\mathrm{df}=\frac{\partial f}{\partial x_{1}} \mathrm{~d} x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\therefore . .+\frac{\partial f}{\partial x_{N}} d x_{N}=0 \tag{17}
\end{equation*}
$$

for all permissible values of the differentials $\mathrm{dx}_{1}, \mathrm{dx}, \ldots, \mathrm{dx} \mathrm{N}_{\mathrm{N}}$ ．If，however， the N variables are not independent，but are related by another condition of the form $\psi\left(x_{1}, x_{2}, \ldots, x_{N}\right)=0$ ，then the procedure of introducing the so－called Lagrange multiplier may be conveniently employed：
Now if λ is so chosen that

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}+\lambda \frac{\partial \Psi}{\partial x_{1}}=0 \\
& \frac{\partial f}{\partial x_{2}}+\lambda \frac{\partial \Psi}{\partial x_{2}}=0 \\
& \text { ここここここここ:こ: } \\
& \frac{\partial f}{\partial x_{N}}+\lambda \frac{\partial \Psi}{\partial x_{N}}=0 \\
& \psi\left(x_{1}, x_{2}, \ldots . x_{N}\right)=0
\end{aligned}
$$

then the necessary condition for an extremum of $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ will be satisfied．The quantity λ is known as a Lagrangian multiplier．
B. Application of the Lagrangian Multiplier Technique to

Optimum Rocket Design
The Lagrangian multiplier method may be used to optimize P subjec: to a fixed or vice versa. In fact the partial differential equations in (18) would be the same for either optimization: only the constraining equation would be different.

In general, the conditions (18) applied to optimum stage weights become:

$$
\begin{align*}
& \frac{\partial P}{\partial W_{1}}+\lambda \frac{\partial \phi}{\partial W_{1}}=0 \\
& \frac{\partial P}{\partial W_{2}}+\lambda \frac{\partial \phi}{\partial W_{2}}=0 \tag{19}\\
& -\ldots-1
\end{align*} \frac{\partial P}{\partial W_{N}}+\lambda \frac{\partial W_{N}}{\partial W_{N}}=0 .
$$

and either ϕ or $P=$ constant

C. Criticism of Previous Methods

The optimization conditions expressed by (19) guarantee a minimum P for constant ϕ or vice versa, since variation of structural factor with stage weight is included in the optimization process. In previous methods (References 1 to 11). this variation was not included. To evaluate these methods, $\$$ can be re-expressed as:

$$
\phi=\phi\left(W_{1}, W_{2}, \ldots, W_{N}, \ldots, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)
$$

Then:

$$
\begin{aligned}
& \frac{\partial \phi}{\partial W_{1}}=\left.\frac{\partial \phi}{\partial W_{1}}\right|_{\sigma_{1}}+\left.\frac{\partial \phi}{\partial \sigma_{1}}\right|_{W_{1}} \frac{d \sigma_{1}}{d W_{1}} \\
& \frac{\partial \phi}{\partial W_{2}}=\left.\frac{\partial \phi}{\partial W_{2}}\right|_{\sigma_{2}}+\frac{\partial}{\partial \sigma_{2}} W_{2} \frac{d \sigma_{2}}{d W_{2}}
\end{aligned}
$$

$$
\frac{\partial \phi}{\partial W_{N}}=\left.\frac{\partial \phi}{\partial W_{N}}\right|_{\sigma_{N}}+\left.\frac{\partial \phi}{\partial \sigma_{N}}\right|_{W_{N}} \frac{d \sigma_{N}}{d W_{N}}
$$

Equations (19) then become

$$
\begin{gather*}
\frac{\partial P}{\partial W_{1}}+\left.\lambda \frac{\partial \phi}{\partial W_{1}}\right|_{\sigma_{1}}+\left.\lambda \frac{\partial \phi}{\partial \sigma_{1}}\right|_{W_{1}} \frac{d \sigma_{1}}{d W_{1}}=0 \\
\frac{\partial P}{\partial W_{2}}+\left.\lambda \frac{\partial \phi}{\partial W_{2}}\right|_{\sigma_{2}}+\left.\lambda \frac{\partial \phi}{\partial \sigma_{2}}\right|_{W_{2}} \frac{d \sigma_{2}}{d W_{2}}=0 \\
-\cdots-1 \tag{22}
\end{gather*} \frac{\partial P}{\partial W_{N}}+\left.\lambda \frac{\partial \phi}{\partial W_{N}}\right|_{\sigma_{N}}+\left.\lambda \frac{\partial \phi}{\partial \sigma_{N}}\right|_{W_{N}} \frac{d \sigma_{N}}{d W_{N}}=0 .
$$

and either P or ϕ constant.
When no variation of structural factor with stage weights is considered, the corresponding expressions for "optimization" can easily be shown ${ }^{*}$ to be

[^0]\[

$$
\begin{aligned}
& \frac{\partial P}{\partial W_{1}}+\left.\lambda \frac{\partial Q_{1}}{\partial W_{1}}\right|_{\sigma_{1}}=0 \\
& \frac{\partial P}{\partial W_{2}}+\left.\lambda \frac{\partial}{\partial W_{2}}\right|_{\sigma_{2}}=0 \\
& \ldots \ldots \\
& \frac{\partial P}{\partial W_{N}}+\left.\lambda \frac{\partial W_{N}}{\partial W_{N}}\right|_{\sigma_{N}}=0
\end{aligned}
$$
\]

(2j,
and either P or $\phi=$ constant.
Since relations (22) are the true optimization conditions then, in order for relations (23) to be optimum, (22) and (23) must be compatible. It is clear that, in order for (22) and (23) to be compatible, the relations

$$
\begin{aligned}
& \left.\frac{\partial \phi}{\partial \sigma_{1}}\right|_{W_{1}} \frac{d \sigma_{1}}{d W_{1}}=0 \\
& \left.\frac{\partial \phi}{\partial \sigma_{2}}\right|_{W_{2}} \frac{d \sigma_{2}}{d W_{2}}=0 \\
& \ldots \ldots . \ldots \\
& \left.\frac{\partial \phi}{\partial \sigma_{N}}\right|_{W_{N}} \frac{d \sigma_{N}}{d W_{N}}=0
\end{aligned}
$$

must hold.

Since (24) cannot be valid, except in the nonrealistic case where the structural factor does not vary with stage weight. Eqs. (22) and (23) are not compatible. Hence, Eqs. (23) do not represent a true optimization criterion for realistic rocket design. The actual discrepancy in the design criterion in using (23) rather than (22) will depend upon the relative magnitudes of the terms in (22) that have the coefficient λ. If the second term of coefficient λ in (22) is negligible compared to the first term of coefficient λ, then (23) represents a realistic optimization. In general, however, this is not the case.
D. Reduction of the Optimization Equations to Simpler Form

From Eq. (15), for fixed W_{L} :

$$
\begin{equation*}
\frac{\partial P}{\partial W_{1}}=\frac{\partial P}{\partial W_{2}}=\ldots=\frac{\partial P}{\partial W_{N}}=\frac{1}{W_{L}} \tag{25}
\end{equation*}
$$

Substituting (25) into (19) and eliminating common terms, the optimization equations reduce to:

$$
\begin{equation*}
\frac{\partial \phi}{\partial W_{1}}=\frac{\partial \phi}{\partial W_{2}}=\cdots=\frac{\partial \phi}{\partial W_{N}} \tag{2.6}
\end{equation*}
$$

and either ϕ or $P=$ constant
IV. APPLICATION TO ODTIMUM THREE-STAGE ROCKET DESIGN

For a three-stage rocket. Eqs. (15) and (16) become

$$
\begin{equation*}
p=\frac{w_{1}+w_{2}+w_{3}+w_{L}}{w_{L}} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\left(\frac{w_{1}+w_{2}+w_{3}+w_{L}}{c_{1} w_{1}^{n_{1}}+w_{2}+w_{3}+w_{L}}\right)^{I}\left(\frac{w_{2}+w_{3}+w_{L}}{c_{2} w_{2}^{n_{2}^{2}}+w_{3}+w_{L}}\right)^{I_{2}}\left(\frac{w_{3}+w_{L}}{c_{3} w_{3}^{n_{3}}+w_{L}}\right)^{I_{3}} \tag{28}
\end{equation*}
$$

Accordingly,

$$
\begin{align*}
\frac{\partial \phi}{\partial W_{1}}= & \frac{\phi I_{1}\left[\left(1-n_{1}\right) c_{1} w_{1}^{n}+\left(1-n_{1} c_{1} w_{1}^{n_{1}^{-1}}\right)\left(w_{2}+w_{3}+w_{L}\right)\right]}{\left(w_{1}+w_{2}+w_{3}+w_{L}\right)\left(c_{1} w_{1}^{n_{1}}+w_{2}+w_{3}+w_{L}\right)} \tag{29}\\
\frac{\partial \phi}{\partial W_{2}}= & \frac{\phi I_{1}\left(c_{1} w_{1}^{n_{1}-1}-1\right) w_{1}}{\left(w_{1}+w_{2}+w_{3}+w_{L}\right)\left(c_{1} w_{1}^{n_{1}}+w_{2} w_{3}+w_{L}\right)} \\
& +\frac{\phi I_{2}\left[\left(1-n_{2}\right) c_{2} w_{2}^{n_{2}}+\left(1-n_{2} c_{2} w_{2}^{n_{2}-1}\right)\left(w_{3}+w_{L}\right)\right]}{\left(w_{2}+w_{3}+w_{L}\right)\left(c_{2} w_{2}^{n_{2}}+w_{3}+w_{L}\right)} \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\partial W_{1}}{\partial W_{3}}=\frac{\phi I_{1}\left(C_{1} w_{1}^{n_{1}-1}-1\right) W_{1}}{\left(W_{1}+W_{2}+W_{3}+w_{1}\right)\left(C_{1} w_{1}{ }^{n_{1}}+W_{2}+w_{3}+w_{1}\right)} \\
& +\frac{\phi I_{2}\left(c_{2} w_{2}^{n_{2}^{-1}}-1\right) w_{2}}{\left(w_{2}+w_{3}+w_{L}\right)\left(c_{2} w_{2}^{n_{2}}+w_{3}+w_{L}\right)} \\
& +\frac{\phi I_{3}\left[\left(1-n_{3}\right) C_{3} w_{3}^{n_{3}}+\left(1-n_{3} C_{3} w_{3}^{n_{3}^{-1}}\right) w_{L}\right]}{\left(w_{3}+w_{L}\right)\left(C_{3} w_{3}^{n_{3}}+w_{L}\right)} \tag{31}
\end{align*}
$$

Substituting (29). (30), and (31) into the optimization equations,

$$
\frac{\partial \phi}{\partial W_{1}}=\frac{\partial \phi}{\partial W_{2}}=\frac{\partial \phi}{\partial W_{3}} .
$$

and factoring out ϕ yields two independent nonlinear equations:

$$
\begin{align*}
\frac{I_{1}\left(1-n_{1} c_{1} w_{1}^{n_{1}-1}\right.}{\left(1-c_{1} w_{1}^{n_{1}-1}\right)} & {\left[1-c_{1} w_{1}^{n_{1}^{-1}}\left(\frac{w_{1}+w_{2}+w_{3}+w_{1}}{c_{1} w_{1}^{n_{1}}+w_{2}+w_{3}+w_{L}}\right)\right] } \\
& =I_{2}\left[1-n_{2} c_{2} w_{2}^{n_{2}^{-1}}\left(\frac{w_{2}+w_{3}+w_{L}}{c_{2} w_{2}^{n_{2}}+w_{3}+w_{L}}\right)\right] \tag{32}
\end{align*}
$$

$$
\begin{align*}
& 1_{2} \frac{\left(1-m_{2} c_{2} w_{2}^{n_{2}-1}\right)}{\left(-1-c_{2} w_{2}^{w_{2}^{-1}}\right)}\left[1-c_{2} w_{2}^{n_{2}-1}\left(\frac{w_{2}+w_{3}+w_{2}}{\left.\left.c_{2} w_{2}^{n_{2}+w_{3}+w_{1}}\right)\right]}\right]\right. \\
& =I_{3}\left[1-n_{3} C_{3} w_{3}^{n_{3}-1}\left(\frac{w_{3}+w_{L}}{C_{3} w_{3}^{n_{3}}+w_{L}}\right)\right] \tag{33}
\end{align*}
$$

Equations (32) and (33) together with the constraint equation, or $\boldsymbol{P}=$ constant, conctitute three equations in terme of the three unknowns W_{1}, W_{2}, and W_{3}. For specified sete of values of $I_{1}, I_{2}, I_{3}, C_{1}, C_{2}, C_{3}$, n_{1}, n_{2}, n_{3}, and or P (depending upon which type of optimization is desired), the three equations can be solved by iteration techniques to yield optimum values of W_{1}, and W_{2}, and W_{3}. By employiag Equations (11) and (13), the other rocket parameters can aleo be determined.

V. APPLICATION TO OPTIMIZING TWO-STAGE ROCKET DESIGN

Analogous to the three stage optimization, the optimization conditions for a two stage rocket become:

$$
\frac{\partial \phi}{\partial W_{1}}=\frac{\partial \phi}{\partial W_{2}}
$$

$$
\begin{equation*}
\text { and } \phi \text { or } P=\text { constant } \tag{34}
\end{equation*}
$$

which yield:

$$
\begin{gather*}
I_{1} \frac{\left(1-n_{1} c_{1} w_{1}{ }^{n_{1}}-1\right)}{\left(1-c_{1} W_{1}{ }^{n_{1}}-1\right)}\left[1-c_{1} w_{1}{ }^{n_{1}-1}\left(\frac{w_{1}+w_{2}+w_{L}}{c_{1} w_{1}{ }^{n_{1}}+w_{2}+w_{L}}\right)\right] \\
=I_{2}\left[1 \cdots n_{2} c_{2} w_{2}^{n_{2}}-1\left(\frac{w_{2}+w_{L}}{c_{2} w_{2}^{n_{2}}+w_{L}}\right)\right] \tag{35}
\end{gather*}
$$

Equation (35) together with the constraint, ϕ or $P=$ constant, can be solved by iteration to yield optimal values of W_{1} and W_{2}.

VI. APPLICATION TO N-STAGE ROCKET OPTIMIZATION

If iterative techniques can be expanded to include solving N simultaneous nonlinear equations, then the process described above can be extended to any number of stages. In the cafe of a large number of stages, computerized random search techniques might be employed to solve for optimum values of the stage weights. Once the optimum stage weights are obtained, these values can be substituted into Eqs. (11) and (13) to solve for the uther rocket parameters.

REFERENCES

1. Malina, F.J., and Summerfield, M., "The Problem of Escape from the Earth by Rocket, " Journal of the Aeronautical Sciences, vol. 14, Auguat 1947, p. 471.
2. Vertregt, M., "A Method for Calculating the Mass Ratios of Step-Rockete, " Journal of the British Interplanetary Society, vol. 15, 1956, p. 95.
3. Goldsmith, M., "On the Optimization of Two-Stage Rockets, " Jet Propulaion, vol. 27, 1957, p. 415.
4. Schurmann, E.E.H., "Oftimum Staging Technique for Multistaged Rodket Vehicles," Jet Propulsion, vol. 27, 1957, p. 863.
5. Weisbord, L., "A. Generalized Optimization Procewne for N-Staged Missiles, " Jet Propulsion, March 1958, p. 164.
6. Hall, H. H. and Zambelle, E.D., "On the Optimization of Multistage Rockets, " Jet Propulsion, vol. 28, July 1958, p. 463.
7. Subotowicz, M., "The Optimization of the N-Step Rocket with Different Construction Parameters and Propellant Specific Impulses in Each Stage," Jet Propulsion, vol. 28, July 1958, p. 460.
8. Faulders, C.R., "Optimization of Multi-Staged Missiles," Technical Report, North American Aviation, 1959.
9. Hanson, A.A., "A Preliminary Design Method of Optimizing Vehicle Stage Proportions, " Report Number 59-9110-43-1, Space Technology Laboratories, Inc., 29 September 1959 (Confidential).
10. Baer, H. W., "Design of Take-Off Masees of Multi-Stage, ICBM-Type Rockets with Given Range and Payload Objectives, " Report Number EM 9-8, TN-59-0000-00228, Space Technology Laboratories, Inc., 2 February 1959.
11. Summerfield, M. and Seifert, H.S., "Flight Performance of Rocket in Straight Line Motion, " Space Technology, Pp. 3-25, John Wiley and Sons, New York, 1959.
12. Dergarabedian, P. and Ten Dyke, R.P., "Estimating Performance Capabilities of Boost Rockets," TR-59-0000-00792, Space Technology Laboratories, Inc., 10 September 1959.

APPENDIX

Further comparion with previoun methode writing for a three stage

 rccket in terme of σ_{1}, σ_{2} and σ_{3} 。$$
\begin{equation*}
\phi=\left(\frac{w_{1}+w_{2}+w_{3}+w_{L}}{\sigma_{1} w_{1}+w_{2}+w_{3}+w_{L}}\right)^{1}\left(\frac{w_{2}+w_{3}+w_{L}}{\sigma_{2} w_{2}+w_{3}+w_{L}}\right)^{1}\left(\frac{w_{3}+w_{L}}{\sigma_{3} w_{3}+w_{L}}\right)^{I_{3}} \tag{36}
\end{equation*}
$$

Then

$$
\begin{align*}
\left.\frac{\partial \phi}{\partial W_{1}}\right|_{1} & =\frac{I_{1} \phi\left(1-\sigma_{1}\right)\left(W_{2}+W_{3}+W_{L}\right)}{\left(\sigma_{1} W_{1}+W_{2}+W_{3}+W_{2}\right)\left(W_{1}+W_{2}+W_{3}+W_{L}\right)} \tag{37}\\
\left.\frac{\partial \phi}{\partial W_{2}}\right|_{2}= & \frac{1 \phi\left(\sigma_{1}-1\right) W_{1}}{\left(\sigma_{1} W_{1}+W_{2}+W_{3}+W_{L}\right)\left(W_{1}+W_{2}+W_{3}+W_{L}\right)} \\
& +\frac{I_{2} \phi\left(1-\sigma_{2}\right)\left(W_{3}+W_{L}\right)}{\left(\sigma_{2} W_{2}+W_{3}+W_{L}\right)\left(W_{2}+W_{3}+W_{L}\right)} \tag{38}
\end{align*}
$$

and

$$
\begin{align*}
\left.\delta W_{3}\right|_{3} & =\frac{\left.I_{1} \not \sigma_{1}-1\right) W_{1}}{\left(\sigma_{1} W_{1}+W_{2}+W_{3}+W_{L}\right)\left(W_{1}+W_{2}+W_{3}+W_{L}\right)} \\
& +\frac{I_{2} \phi\left(\sigma_{2}-1\right) W_{2}}{\left(\sigma_{2} W_{2}+W_{3}+W_{L}\right)\left(W_{2}+W_{3}+W_{L}\right)} \\
& +\left(I_{3} \not W_{3}+W_{L}\right)\left(W_{3}+W_{L}\right) \tag{39}
\end{align*}
$$

Substuting (37). (38) and (39) into the conditione from (23):

$$
\left.\frac{\partial \sigma_{1}}{\partial w_{1}}\right|_{\sigma_{1}}=\left.\frac{\partial \sigma_{2}}{\partial w_{2}}\right|_{2}=\left.\frac{\partial \psi_{3}}{\partial w_{3}}\right|_{\sigma_{3}}
$$

result in:

$$
\begin{align*}
I_{1}\left[1-\sigma_{1}\left(\frac{W_{1}+W_{2}+w_{3}+W_{L}}{\sigma_{1} W_{1}+W_{2}+W_{3}+W_{L}}\right)\right] & =I_{2}\left[1-\sigma_{2}\left(\frac{W_{2}+W_{3}+W_{L}}{\sigma_{2} W_{2}+W_{3}+W_{L}}\right)\right] \\
& =I_{3}\left[1-\sigma_{3}\left(\frac{W_{3}+W_{L}}{\sigma_{3} W_{3}+W_{L}}\right)\right] \tag{40}
\end{align*}
$$

Equation (40) represents the relations corresponding to previous methode (1-11) for design criteria. By ueing Eqs. (11) and (13), then Eqs. (40), (32), and (33) can be written for comparison purposes in terms of the mase ration. Equation (40) then becomes

$$
\begin{equation*}
I_{1}\left(1-\sigma_{1} r_{1}\right)=I_{2}\left(1-\sigma_{2} r_{2}\right)=I_{3}\left(1-\sigma_{3} r_{3}\right) \tag{41}
\end{equation*}
$$

which is the more familiar form usually seen in the references lisfed above. Equations (32) and (33) become:

$$
\begin{align*}
& I_{1} \frac{\left(1-n_{1} \sigma_{1}\right)}{\left(1-\sigma_{1}\right)}\left(1-\sigma_{1} r_{1}\right)=I_{2}\left(1-n_{2} \sigma_{2} r_{2}\right) \tag{42}\\
& I_{2} \frac{\left(1-n_{2} \sigma_{2}\right)}{\left(1-\sigma_{2}\right)}\left(1-\sigma_{2} r_{2}\right)=I_{3}\left(1-n_{3} \sigma_{3} r_{3}\right) \tag{43}
\end{align*}
$$

or combining (42) and (43):
$I_{1} \frac{\left(1-n_{1} \sigma_{1}\right)}{\left(1-\sigma_{1}\right)}\left(1-\sigma_{1} r_{1}\right)=I_{2}\left(1-n_{2} \sigma_{2} r_{2}\right)=1_{2}\left(1-n_{2}\right)+n_{2} \frac{1_{3}\left(1-\sigma_{2}\right)}{1-n_{2} \sigma_{2}} x$

$$
\begin{equation*}
\left(1-n_{3} \sigma_{3} r_{3}\right) \tag{44}
\end{equation*}
$$

which represent more inclusive optimization conditions. Comparluon © (41) with (44) indicates the significant difference between provious "optientation" and the more realiatic optimization criteria.

[^0]: See Appendix

