Author Topic: Mariner IV: "Eight Months to Mars" 1965 NASA-USIA - Video  (Read 1409 times)

Online catdlr

  • Member
  • Senior Member
  • *****
  • Posts: 7000
  • Enthusiast since the Redstones
  • Marina del Rey, California, USA
  • Liked: 3645
  • Likes Given: 2918
Mariner IV: "Eight Months to Mars" 1965 NASA-USIA; Alfred Bester; John Fitch

Jeff Quitney

Published on Feb 1, 2017

"John Fitch hosts this program about NASA’s Mariner IV space probe and its mission to Mars. He explains the technical aspects of the spacecraft and its complicated eight-month flight to within 5,300 miles of the Red Planet." Written by well-known science fiction author Alfred Bester.

Mariner 4 (together with Mariner 3 known as Mariner–Mars 1964) was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964, Mariner 4 performed the first successful flyby of the planet Mars, returning the first pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, seemingly dead world largely changed the view of the scientific community on life on Mars. Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. On December 21, 1967 communications with Mariner 4 were terminated...

Spacecraft and subsystems

The Mariner 4 spacecraft consisted of an octagonal magnesium frame, 127 cm across a diagonal and 45.7 cm high. Four solar panels were attached to the top of the frame with an end-to-end span of 6.88 meters, including solar pressure vanes which extended from the ends.  A 116.8 cm diameter high-gain parabolic antenna was mounted at the top of the frame as well. An omnidirectional low-gain antenna was mounted on a seven foot, four inch (223.5 cm) tall mast next to the high-gain antenna. The overall height of the spacecraft was 2.89 meters. The octagonal frame housed the electronic equipment, cabling, midcourse propulsion system, and attitude control gas supplies and regulators.

The scientific instruments included:

- A helium magnetometer, mounted on the waveguide leading to the omnidirectional antenna, to measure the magnitude and other characteristics of the interplanetary and planetary magnetic fields.

- An ionization chamber/Geiger counter, mounted on the waveguide leading to the omnidirectional antenna nearer the body of the spacecraft, to measure the charged-particle intensity and distribution in interplanetary space and in the vicinity of Mars.

- A trapped radiation detector, mounted on the body with counter-axes pointing 70° and 135° from the solar direction, to measure the intensity and direction of low-energy particles.

- A cosmic ray telescope...

- A solar plasma probe...

- A cosmic dust detector...

- A television camera, mounted on a scan platform at the bottom center of the spacecraft, to obtain closeup pictures of the surface of Mars. This subsystem consisted of 4 parts, a Cassegrain telescope with a 1.05° by 1.05° field of view, a shutter and red/green filter assembly with 0.08s and 0.20s exposure times, a slow scan vidicon tube which translated the optical image into an electrical video signal, and the electronic systems required to convert the analogue signal into a digital bitstream for transmission.

The electrical power for the instruments and the radio transmitter of Mariner 4 was supplied by 28,224 solar cells contained in the four 176 x 90 cm solar panels, which could provide 310 watts at the distance of Mars...

After launch from Cape Canaveral Air Force Station Launch Complex 12, the protective shroud covering Mariner 4 was jettisoned and the Agena-D/Mariner 4 combination separated from the Atlas-D booster at 14:27:23 UTC on November 28, 1964...

The spacecraft flew by Mars on July 14 and July 15, 1965. Planetary science mode was turned on at 15:41:49 UT on July 14. The camera sequence started at 00:18:36 UT on July 15 (7:18:49 p.m. EST on July 14) and 21 pictures using alternate red and green filters, plus 21 lines of a 22nd picture were taken. The images covered a discontinuous swath of Mars starting near 40° N, 170° E, down to about 35° S, 200° E, and then across to the terminator at 50° S, 255° E, representing about 1% of the planet's surface. The closest approach was 9,846 km from the Martian surface at 01:00:57 UT July 15, 1965 (8:00:57 p.m. EST July 14)...

Public domain film from the US National Archives, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Tony De La Rosa


Advertisement NovaTech
Advertisement SkyTale Software GmbH
Advertisement Northrop Grumman
Advertisement Brady Kenniston
Advertisement NextSpaceflight
Advertisement Nathan Barker Photography