The Indian Space Research Organisation (Isro), on Thursday said it has successfully completed the hot test of cryogenic engine for the GSLV-F11, which is scheduled to launch the GSAT-7A in November this year. A hot test is a ground test conducted to check for the safety and also whether or not all design parameters are met. Unlike a cold test where all the propellants are checked for, a hot test involves firing of the engine in test conditions.
The test, conducted at the Isro Propulsion Complex in Mahendragiri on August 27, was carried out for 200 seconds during which the engine operated in the nominal and 13% uprated thrust regimes."All the propulsion parameters during the test were found satisfactory and closely matched with predictions. For the first time, indigenously developed copper alloy is used in this engine," Isro said.The cryogenic engine will now be integrated with the propellant tanks, stage structures and associated fluid lines to realise the fully integrated flight cryogenic stage.
Rolling Mill LayoutCopper Alloy (Cu-0.5Cr-0.05Ti-0.05Zr) is an important and vital item required for cryogenic/semi-cryogenic engines for the realisation of thrust chamber inner shell and injector face plates of Cryogenic Upper Stage (CUS) engine for GSLV Mk-II, CE20 engine for GSLV Mk-III and Semi-Cryo (SC) stage. This is also required for the Steering Engines (SE) of CUS engine, Gas generator of CUS & CE20 engines, injectors, pre-burner and pyro components of SC engine.These projects require Copper Alloy plates, rods and forgings of various dimensions. For plates, thickness requirement range from 12 mm to 18 mm and width of 850 mm. Rods and forgings of this alloy are also required with diameters ranging from 30 mm upto 300 mm.
Vacuum Induction Melting Furnace 1000kgIndigenisation efforts were made through NFTDC, Hyderabad for CUS, CE20 and SC. Melt capacity was augmented to 1000 kg and plate rolling mill capable of 1500 mm width was established for meeting the project requirements. All required products using this alloy have been successfully realized for CUS, CE20 and Semi-Cryo projects. The hot test of the CUS engine using this copper alloy for 200 sec in the nominal and 13% uprated thrust regime was carried out at IPRC, Mahendragiri. This engine will power the cryogenic stage of GSLV Mk-II, which is scheduled to launch GSAT-7A in November this year.
GSLV was the first launch vehicle of ISRO to fly liquid fueled strapons, first to have a cryogenic upper stage, first to employ hot staging and of course first to achieve the Geostationary Transfer Orbit (GTO).
Quote from: Angry_cat on 11/15/2023 03:40 amGoing over GSLV launch history you have to wonder why ISRO keeps this launch vehicle operational. Out of 15 launches there have been 6 failures of varying degrees putting the failure rate at almost 50%. Now they have LVM3 there is no reason to keep such a unreliable launch vehicle flying.<snip>I think if we view GSLV as more of a technology testbed of sorts we can have a more positive view of the entire GSLV program. GSLV was the first launch vehicle of ISRO to fly liquid fueled strapons, first to have a cryogenic upper stage, first to employ hot staging and of course first to achieve the Geostationary Transfer Orbit (GTO). First in something is always hard and prone to failure and hence why we should appreciate GSLV's various contributions to the Indian Launch Vehicle program.
Going over GSLV launch history you have to wonder why ISRO keeps this launch vehicle operational. Out of 15 launches there have been 6 failures of varying degrees putting the failure rate at almost 50%. Now they have LVM3 there is no reason to keep such a unreliable launch vehicle flying.