Author Topic: Preliminary Landing Tests of a 1/6 Scale Lunar Excursion Vehicle  (Read 269 times)

Online catdlr

  • Member
  • Senior Member
  • *****
  • Posts: 5028
  • Viewed launches since the Redstones
  • Marina del Rey, California, USA
  • Liked: 1740
  • Likes Given: 1186
Project Apollo: "Preliminary Landing Tests of a 1/6 Scale Lunar Excursion Vehicle" 1962 NASA Langley

Jeff Quitney
Published on Mar 10, 2018

1/6 scale model tests of Lunar Module moon landings for Project Apollo conducted at NASA Langley Research Center from June 5, 1962 to June  21, 1962.

"Preliminary Landing Tests of a 1/6-Scale Dynamic Model of a Lunar Excursion Vehicle."

"The film shows 21 trials made on 8 days of the scale Model 413 lunar landing vehicle. Attitudes tested were a pitch of 0, -15, or 15 degrees and yaw of 0 or 45 degrees. Velocities were vertical 10 and horizontal 10, though two trials were simple vertical drops."

Langley film L-733

Reupload of a previously uploaded film with improved video & sound.

The Apollo Lunar Module (LM), originally designated the Lunar Excursion Module (LEM), was the lander portion of the Apollo spacecraft built for the US Apollo program by Grumman Aircraft to carry a crew of two from lunar orbit to the surface and back. Designed for lunar orbit rendezvous, it consisted of an ascent stage and descent stage, and was ferried to lunar orbit by its companion Command/Service Module (CSM), a separate spacecraft of approximately twice its mass, which also took the astronauts home to Earth. After completing its mission, the LM was discarded... The Lunar Module was the first manned spacecraft to operate exclusively in the airless vacuum of space. It was the first, and to date only, crewed vehicle to land on a natural object in the solar system other than the Earth.

Six such craft successfully landed on the Moon between 1969 and 1972. A seventh provided propulsion and life support for the crew of Apollo 13 when their CSM was disabled by an oxygen tank explosion en route to the Moon.

The LM's development was plagued with problems which delayed its first unmanned flight by about ten months, and its first manned flight by about three months. Despite this, the LM eventually became the most reliable component of the Apollo/Saturn space vehicle, the only component never to suffer a failure that significantly affected a mission.

The total cost of the LM for development and the units produced was $21.3B in 2016 dollars, adjusting from a nominal total of $2.2B using the NASA New Start Inflation Indices.

Contract letting

In July 1962, eleven firms were invited to submit proposals for the LEM. Nine companies responded in September, answering 20 specific questions posed by the NASA RFP in a 60-page limited technical proposal. Grumman Aircraft was awarded the contract two months later. Grumman had begun lunar orbit rendezvous studies in the late 1950s and again in 1961. The contract cost was expected to be around $350 million. There were initially four major subcontractors—Bell Aerosystems (ascent engine), Hamilton Standard (environmental control systems), Marquardt (reaction control system) and TRW's Space Technology Laboratories (descent engine).

The Lunar Module was chiefly designed by Grumman aerospace engineer Thomas J. Kelly. The first LEM design looked like a smaller version of the Apollo Command/Service Module (a cone-shaped cabin atop a cylindrical propulsion section) with folding legs. The second design invoked the idea of a helicopter cockpit with large curved windows and seats, to improve the astronauts' visibility for hover and landing.

As the program continued, there were numerous redesigns to save weight, improve safety, and fix problems. First to go were the heavy cockpit windows, and the seats; the astronauts would stand while flying the LEM, supported by a cable and pulley system, with smaller triangular windows giving them sufficient visibility of the landing site. Later, the redundant forward docking port was removed. These changes resulted in significant weight savings.

A configuration freeze did not start until April 1963, when the ascent and descent engine designs were decided. In addition to Rocketdyne, a parallel program for the descent engine was ordered from Space Technology Laboratories (TRW) in July 1963, and by January 1965 the Rocketdyne contract was canceled.

Power was initially to be produced by fuel cells built by Pratt and Whitney similar to the CSM, but in March 1965 these were discarded in favor of an all-battery design.

In June 1966, the name was changed to Lunar Module (LM), eliminating the word "excursion".
Originally a public domain film, slightly cropped to remove uneven edges, with the aspect ratio corrected, and one-pass brightness-contrast-color correction & mild video noise reduction applied.
The soundtrack was also processed with volume normalization, noise reduction, clipping reduction, and/or equalization (the resulting sound, though not perfect, is far less noisy than the original).

Tony De La Rosa