
VACUUM PRESSURES AND ENERGY IN A STRONG
MAGNETIC FIELD
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We study vacuum in a strong magnetic field. It shows a nonlinear response, as a
ferromagnetic medium. Anisotropic pressure arises and a negative pressure is ex-
erted in the direction perpendicular to the field. The analogy of this effect with the
Casimir effect is analyzed. Vacuum transverse pressure is found to be of the same
order of the statistical pressure for B ∼ 1015G and N ∼ 1033electrons/cm3. Vacu-
um interaction with the field is studied also for B ∼ 1016G and larger, including
the electron anomalous magnetic moment. We estimate quark contributions to the
vacuum behavior.

1 Introduction

There is an analogy among certain boundary conditions and the effect
of external fields. Some boundary conditions lead to new physical effects as
it is for instance the anisotropic box created by two parallel metallic plates
of length a separated by a distance d, placed in vacuum. For d << a an
attractive force appears in between the plates, as produced by the zero point
vacuum energy of electromagnetic modes, leading to the well-known Casimir
effect1,2.

The Casimir effect shows that if one breaks the symmetry in a region of
space, the energy EV of the vacuum modes results distributed anisotropically.
We may consider the vector d perpendicular to the plates as characterizing
the symmetry breakdown. Only vacuum modes of momentum

pnd =
2πnh̄

d
, n = 1, 2, ...

in the direction of symmetry breakdown are allowed inside the cavity; then

EV =
√

p2
1 + p2

2 + p2
nd .

A negative pressure dependent on d arises inside the plates, and perpendicular
to them.

On the other hand, it is known that in an external magnetic field B, the
momentum of an electron (positron) in the direction perpendicular to the field
is quantized p⊥ =

√
2eBn. It is interesting to inquire then if an effect similar
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to the Casimir one is produced by the zero point electron-positron energy of
vacuum in an external constant magnetic field.

2 Vacuum Properties in a Constant Magnetic Field

The electron-positron zero point vacuum energy in an external electro-
magnetic field was obtained by Heisenberg and Euler3. In the specific case of
an external constant magnetic field, this expression results as the pure vacuum
term contribution when calculating the tadpole term of the thermodynamic
potential Ω in a medium5. In this calculation one starts from the energy eigen-
values of the Dirac equation for an electron (positron) in a constant magnetic
field B,

εn =
√

p2
3 + m2 + 2eBn , (1)

where n = 0, 1, 2, ..., are the Landau quantum numbers, p3 is the momentum
component along the magnetic field (we consider B parallel to the third axis)
and m is the electron mass. The general expression for Ω contains two terms

Ω = ΩST + ΩV . (2)

The first one is the quantum statistical contribution which vanishes in the
limit of zero temperature and zero density. The second term accounts for
the zero-point energy: it contains the contribution coming from the virtual
electron-positron pairs created and annihilated spontaneously in vacuum and
interacting with the field B. In the one loop approximation, where no radiative
corrections are considered, it has the expression

ΩV = − eB

4π2

∞∑
n=0

αn

∫ ∞

−∞
dp3εn , (3)

with αn = 2− δn0. As can be observed, the quantity in Eq. (3) is divergent.
After regularization it leads to the Euler-Heisenberg expression

ΩV =
e2B2

8π2

∫ ∞

0

e−m2x/eB

[
cothx

x
− 1

x2
− 1

3

]
dx

x
. (4)

We observe that the vacuum term regularization demands the addition of
a negative infinite term proportional to B2 which absorbs the classical en-
ergy term B2/8π. The vacuum thermodynamic potential is actually negative,
however, this is not any problem if we interpret it according to the general
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Figure 1. Vacuum magnetization MV for magnetic fields B ∼ 1013G.

energy-momentum tensor expression in a constant magnetic field (see Ref.4)
for the case of zero temperature and zero chemical potential,

T0µ,ν = 4FµρFνρ∂ΩV /∂F 2 − δµνΩV , (5)

leading to a positive pressure PV 3 = −Ω along the magnetic field B, and to
PV⊥ = −Ω − BM in the direction perpendicular to the field, where MV =
−∂ΩV

∂B is the magnetization, which is obtained from (4) as

MV = −2ΩV

B
− em2

8π2

∫ ∞

0

e−m2x/eB

[
cothx

x
− 1

x2
− 1

3

]
dx . (6)

It is easy to see that the magnetization (6) is a positive quantity. Moreover,
it has a non- linear dependence on the field B, as is shown in Fig. 1 . That is
why we state that the vacuum has ferromagnetic properties, although in our
present one-loop approximation we do not consider the spin-spin interaction
between virtual particles.
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Concerning the transverse pressure, PV⊥ = −Ω−MB, we get

PV⊥ = ΩV +
m2eB

8π2

∫ ∞

0

e−m2x/eB

[
cothx

x
− 1

x2
− 1

3

]
dx. (7)

PV⊥ is negative and it may lead to some effects for small as well for high
fields.

3 The Low Energy Limit eB << m2

Fields currently achieved in laboratories are very small if compared with
the critical field Bc = m2/e ∼ 1013. When this limit condition holds B <<
m2/e, one can write,

ΩV ≈ − (eB)4

360π2m4
, (8)

and in consequence

PV⊥ ≈ − (eB)4

120π2m4
. (9)

In usual units it reads

PV⊥ ≈ − π2h̄c

120b4
, (10)

where the characteristic parameter b(B) is

b(B) =
2πλ2

L

λC
. (11)

Here, λL is the magnetic wavelength

λL =

√
hc

2eB
(12)

and λC is the Compton wavelength λC = h
mc . It is easy to see that λ2

L

coincides with the area corresponding to one magnetic quantum flux Φo = hc
2e .

Pressure then is a function of the field dependent parameter b(B), which is
determined by the ratio between the Compton wavelength and the “one fluxon
area”.

The expression for the transverse pressure (10) looks similar to the ex-
pression for the negative pressure due to the Casimir effect between parallel
metallic plates 1

PC = − π2h̄c

240d4
. (13)
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Figure 2. Vacuum transverse pressure for small fields B ∼ 105G.

PV⊥ is then a Casimir like pressure. For small fields, of order 10 − 103G,
it is negligible as compared with the usual Casimir pressure. But for larger
fields, e.g. for B ∼ 105 G it becomes larger; one may obtain then pressures up
to PV⊥ ∼ 10−9dyn/cm2 (Fig. 2). For a distance between plates d = 0.1cm,
gives PC ∼ 10−14dyn/cm2 , i.e., five orders of magnitude smaller than PV⊥.
This suggests that vacuum interaction with the magnetic field may produce
observable effects for fields, which can be realized in nature or in terrestrial
laboratories.

4 Vacuum Pressure for Strong Fields

At this point, thinking in possible astrophysical consequences, it is use-
ful to analyze the behavior of transverse vacuum pressure for large magnetic
fields, i.e., for fields of the order of the critical one Bc = m2

e/e ∼ 1013G and
larger. Fields of these orders can be generated due to gravitational and ro-
tational effects in stellar objects8, where the electron-positron gas plays an
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important role. We use a model of white dwarf, in which the main contribu-
tion to thermodynamic magnitudes comes from the electron sector, described
as a degenerate quantum gas. There is also a nuclei background, which com-
pensates the electrical charge, but it behaves like a classical gas, and leads to
quantities negligible small as compared with those of the electron gas.

The statistical contribution of electrons to the transverse pressure, in the
degenerate limit, is

PST⊥ =
2(eB)2

π2

nµ∑
n=1

n ln
µ +

√
µ2 −m2 − 2eBn√
m2 + 2eBn

, (14)

where n is the Landau state number, and µ is the chemical potential, related
to the electron density through the expression

N =
eB

2π2

nµ∑
n=0

αn

√
µ2 −m2 − 2eBn , (15)

and nµ is an integer

nµ = I(
µ2 −m2

2eB
). (16)

In the extreme case of sufficiently strong magnetic field 2eB > µ2 −m2,
all the electron system is in the Landau ground state n = 0. But it is easy to
note that this state does not contribute to the statistical pressure. In other
words, when the electrons are confined to the Landau ground state, the total
transverse pressure is equal to the vacuum one and is negative. It causes
system instability. It means that there is a limit value of magnetic field for
which the system stability may be preserved, and it depends on the electron
density

Blim = AN2/3, A =
(2π4)1/3

e
. (17)

For fields B = Blim the instability is produced, and the transverse pressure
becomes negative due to the vacuum term. For less fields, that is for B < Blim,
we must consider both contributions: statistical and vacuum one. For typical
densities of a white dwarf N ∼ 1030electrons/cm3 we find Blim ∼ 1013G. In
this particular case, if B < Blim we get P⊥ ≈ PST⊥ ∼ 1023 − 1024dyn/cm2,
and P⊥ = PV⊥ ∼ 1019 − 1022dyn/cm2 for B = Blim. We conclude that when
B = Blim the star collapses. It agree with the results obtained in 4.

A different situation is produced for larger fields. For B ∼ 1015G
, pressures of order PV⊥ ∼ 1025 − 1028dyn/cm2 are found, and thus,
it may be of the same order than the statistical term, although densities
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N ∼ 1033electrons/cm3 are required to keep PST⊥ 6= 0. The vacuum con-
tribution becomes of the same importance of the statistical one and must be
taken into account in any analysis of the system stability. In fact for these field
intensities , it may happen that the total transverse pressure may not vanish,
and even become negative, although the electron system were not confined to
the Landau ground state n = 0.

5 Ultra Strong Fields eB >> m2

In the previous section we see that the effects of vacuum interaction with
the magnetic field can not be neglected if we compare them with the effects
produced due to the same interaction of the real particle system, for B ∼
1015G. We can expect then, that the vacuum role becomes more and more
relevant for larger fields. One way of handling this problem is by including
the effect of radiative corrections through an anomalous magnetic moment,
and modifying consequently the energy spectrum, which would appear as a
solution of the Dirac equation for a charged particle with anomalous magnetic
moment 9

εa
n,η =

√
p2
3 + (

√
m2 + (2n + η + 1)eB + η

α

2π
µBB)2 , (18)

for n = 0, 1, 2, ..., where µB is the Bohr magneton, and η = 1,−1 are the
σ3 eigenvalues corresponding to the two orientations of the magnetic moment
with respect to the field B. The vacuum thermodynamic potential has now
the form

ΩV = − eB

4π2

∑
η=1,−1

∞∑
n=0

∫ ∞

−∞
dp3ε

a
n,η . (19)

After regularization, it transforms in to

ΩV =
(eB)2

8π2

∞∑

k=0

4k

(2k)!
((

α

4π
)2

eB

m2
)2kΛk , (20)

where

Λ0 =
∫ ∞

0

dx

x2
e−( m2

eB +( α
4π )2 eB

m2 )x(cothx− 1
x
− 1

3
x) , (21)

and

Λk =
∫ ∞

0

dxe−( m2
eB +( α

4π )2 eB
m2 +1)x(

1
sinhx

− 1
x

)((
4π

α
)2

m2

eB

d

dx
−1)kx2(k−1) , (22)
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Figure 3. Vacuum transverse pressure and energy dependence on the field, taking into
account the electron anomalous magnetic moment.

for k 6= 0. Due to the smallness of the factor α
4π ∼ 10−4, in the series

expansion (20) we can neglect all terms Λk with k 6= 0, except for fields
B ∼ 10−1( 4π

α )2Bc, being ( 4π
α )2Bc ∼ 1020G, when more terms should be

include.
Magnetization and transverse pressure become

MV =−2ΩV

B
− e2B

8π2
(
m2

eB
−(

α

4π
)2

eB

m2
)
∫ ∞

0

dx

x
e−( m2

eB +( α
4π )2 eB

m2 )x(coth x− 1
x
− x

3
),

(23)

PV⊥=ΩV +
(eB)2

8π2
(
m2

eB
− (

α

4π
)2

eB

m2
)
∫ ∞

0

dx

x
e−( m2

eB +( α
4π )2 eB

m2 )x(cothx− 1
x
− x

3
).

(24)
It must be noted that for B > 4π

α
m2

e ∼ 1016G although p⊥ remains negative,
it grows more slowly than for fields B < 4π

α
m2

e , and its absolute value is
smaller than p3 (Fig. 3).
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6 A Quark Gas

Fields of very high orders B ∼ 1017 − 1020G are expected to be found
in the cores of extremely magnetized neutron stars. But electron system is
hardly in equilibrium for this range of fields, and for these stellar objects the
neutron and proton gases are the most important. The last suggests that the
interaction of quark-antiquark virtual pairs with the magnetic field should
be studied. As the interaction energy with the magnetic field may become
comparable with the color field interaction among quarks, we may consider
the quark interaction with the magnetic field in the similar way as the electron
gas. We may write the electromagnetic vacuum energy of the quark-antiquark
field in presence of the magnetic field. The main contribution comes from the
u-type quark, which has a smaller mass than other quarks. For u-type quark
we can write

Ωu
V = −quB

8π2

∫ ∞

0

e
−(

m2
u

quB +( αu
4π )2 quB

m2
u

)x
(cothx− 1

x
− 1

3
x)

dx

x2
, (25)

where qu = 2
3e and mu are the u-quark charge and mass, respectively, and

αu = q2
u/h̄c. Expression (25) for the vacuum quark-antiquark electromagnetic

energy is valid for fields up to B ∼ 1019G. Magnetization has the form

Mu
V = −2Ωu

V

B
− q2

uB

8π2
(

m2
u

quB
−

(
αu

4π
)2

quB

m2
u

)
I (26)

and transverse pressure is

pu
V⊥ = Ωu

V −
(quB)2

8π2
(

m2
u

quB
−

(
αu

4π
)2

quB

m2
u

)
I

with

I =≡
∫ ∞

0

e
−(

m2
u

quB +( αu
4π )2 quB

m2
u

)x
(coth x− 1

x
− x

3
)
dx

x
. (27)

The transverse vacuum pressure gives values of the order of pu
V⊥ ∼ 1029 −

1031dyn/cm2 for fields B ∼ 1017G, and pu
V⊥ ∼ 1031 − 1033dyn/cm2 for fields

B ∼ 1019G, as is shown in Fig. 4.

7 Conclusions
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Figure 4. Transverse pressure exerted by the u-type quark-antiquark virtual pairs.

A magnetic field modify the electron-positron zero-point energy of vac-
uum, leading to new physical effects. The vacuum shows a nonlinear response,
as a ferromagnetic medium. A negative pressure, exerted in the direction per-
pendicular to the field, appears and it is a Casimir like force, which must
produce observable effects for fields B ∼ 105G. The electron-positron zero-
point energy leads to a transverse pressure of similar order of the statistical
one for fields B ∼ 1015G, and densities N ∼ 1033electrons/cm3 or larger
would be required in order to avoid the collapse.

Vacuum shrinks perpendicular to the magnetic field. This leads us to
conclude that nuclear and/or quark matter are unstable for fields B ∼ m2

n/e,
mn being the nucleon mass. As the contribution of the transverse quark
pressure is smaller than its longitudinal term, the vacuum negative transverse
pressure makes the system to implode.
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Appendix

We start from the expression (19) for ΩV . Using the integral representa-
tion

a1/2 =
1
2
π−1/2

∫ ∞

0

dtt−3/2(1− e−at) , (28)

and taking a1/2 = εa
n,η, we can perform the Gaussian integral on p3. We

obtain

ΩV (ε) =
eB

8π2

∑
η=1,−1

∞∑
n=0

∫ ∞

ε

dt

t2
e−(
√

m2+(2n+η+1)eB+η α
4π

eB
m )2t , (29)

where we have introduced a quantity ε in order to regularize the divergent
term dependent on a in Eq. (28). Performing the sum over η, we can write

ΩV (ε) =
eB

8π2

∫ ∞

ε

[
e−(m− α

4π
eB
m )2t

+ 2
∞∑

n=1

e−(m2+2neB+( α
4π

eB
m )2)t cosh

α

2π

eB

m
t
√

m2 + 2neB

]
dt

t2
. (30)

Substituting the series expansion of cosh α
2π

eB
m t
√

m2 + 2neB, we get

ΩV (ε) =
eB

8π2

∫ ∞

ε

dt

t2
(e−(b0−g)2t + 2

∞∑
n=1

∞∑

k=0

(2gbnt)2k

2k!
e−(b2n+g2)t) , (31)

where bn =
√

m2 + 2neB and g = α
4π

eB
m . Using the fact that

b2
n

∫ ∞

ε

dte−(b2n+g2)tt2(k−1) =
∫ ∞

ε

dte−(b2n+g2)t[
d

dt
− g2]t2(k−1), (32)

and performing the sum over n, we find that

ΩV (ε) =
eB

8π2

∫ ∞

ε

dt

t2
(e−(b0−g)2t (33)

+ 2
eB

8π2

∞∑

k=0

(2g)2k

2k!

∫ ∞

ε

dte−(b20+g2)te−eBt 1
sinh eBt

[
d

dt
− g2]x2(k−1)) .

Due to the smallness of α
2π ∼ 10−4, we can approximate in Eq. (33) 1± α

2π ≈ 1
and write

e−2b0gt + e−eBt 1
sinh eBt

≈ coth eBt . (34)
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Finally, subtracting to

coth eBt

and
1

sinh eBt

the first terms in their series expansion, we can take ε → 0, and obtain the
expression (20), where we put eBt = x.
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