#### dustinthewind

• Full Member
• Posts: 616
• U.S. of A.
• Liked: 249
• Likes Given: 267
##### Re: Any resolutions to FTL paradoxes?
« Reply #300 on: 09/23/2017 12:35 AM »

Time as the Fourth dimension confuses me. In the three spatial dimensions, A co-ordinate (x,y,z) can be defined regardless of the inertial reference frame you are in. Yet, by the same rules, time cannot be given a particular co-ordinate point, as there is no "Universal Time", and ll time is relative to the particular inertial reference frame from which it is being measured.

How can you define a co-ordinate system without any fixed co-ordinates (along the time axis)?

It isn't really that confusing.  Time is variable in the rate at which is passes.  Distance is also variable in the rate at which is passes.  As the universe has freedom in dimension at which objects move through space it also has some freedom to change the rate at which time passes.

Did you know the magnetic field would not exist were it not for this freedom?  Let us say the current in an observing magnet travels in circles.  Current is made up of charges and one charge in the observing magnet sees the current circling in the other magnet.  This observing charge sees current in the opposite magnet is moving in the opposite direction as it is.  By relativity charges moving in the opposite direction are slowed in time so move slower.  This observing charge sees other charges in the other magnet as moving with it.  These charges moving with the observing charge by relativity move faster in time, so these charges spend less time existing where they move faster and more time where they move slower.

Only the negative charges are moving in the circle so it is the negative charges that spend more time where time is perceived to be slower.  The positive charges are not moving in a circle so they remain evenly distributed around the cricle.  This creates a dipole field but this dipole field changes depending on the observing charge.

http://www.spacetimetravel.org/tompkins/node7.html

This is exactly what a magnetic field is, a dipole electric field that changes depending on the observing charge.  Magnetic field lines are the electric potential lines.  A velocity dependent (direction and magnitude) dipole electric field - perpendicular to the potential lines.  The magnetic field is actually a relativistic electric field.  The magnetic field describes the relativistic aspects of the electric field and the standard electric field is used to describe the non-relativistic aspects.

Now is there some deeper meaning to the rate of time passing being a variable?  Possibly but the fact that it has a degree of freedom makes it an extra dimension.
« Last Edit: 09/23/2017 12:44 AM by dustinthewind »

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #301 on: 09/23/2017 12:49 AM »

The issue is about "Reciprocity" not symmetry.

This page, https://en.wikipedia.org/wiki/Time_dilation has a well written section on Reciprocity in SR, "velocity time dilation". Then in the next section on Gravitational time dilation it says;

"Contrarily to velocity time dilation, in which both observers measure the other as aging slower (a reciprocal effect), gravitational time dilation is not reciprocal. This means that with gravitational time dilation both observers agree that the clock nearer the center of the gravitational field is slower in rate, and they agree on the ratio of the difference."

The Hafele and Keating experiment supports no-reciprocity. Even the Michelson-Moorley experiment does not demonstrate reciprocity. So far, I have not found any experimental evidence to support a reciprocity effect. Gravitational time dilation is the result of the Equivalence principle alone, not any particular solution of GR.

Reciprocity is a requirement of the Lorentz transformation and the Lorentz group, it is assumed in its derivation. Reciprocity is what forces the paradox to happen. Reciprocity is not one of the postulates of SR. It is an assumption that reciprocity is required for "The laws of physics to remain invariant in all inertial reference frames". However, it is trivial to show that the law of physics remain unchanged, even when the flat Minkowski metric is transformed by a constant coefficient "A", in such a way that;

ds2 = (1/A)*c2dt2 - A*(dx2 + dy2 + dz2)

Resulting in a scaled system of units where "force" is an invariant wrt the constant "A". Leaving all physical laws and experimental data, including EM fields unchanged, but the transformation from A=1 to A>1 is not reciprocal. In the latter time is slow, in the former it's not. No reciprocity, no paradox. IMO this too is the result of the Equivalence principle, when one body accelerates to velocity v=0.6c and the other does not. The end result is not reciprocal.

As far as I'm concerned, until someone shows evidence of reciprocity, it is by no means proven.

I guess I know Puthoff wrote this equation this way. https://scholar.google.com/scholar?cluster=17157422968110203841&hl=en&as_sdt=0,26

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2)

where A=K

I am not sure why he converts c_o*t_o to c*t/K when it seems the conversion should be K*c=c_o and t*sqrt(K)=t_o so c_o*t_o=c*t*K .

However, I found it a bit easier to think of it in terms of the shrunken ruller.  For the distance that light traverses over a time in a polarized vacuum greater than 1 or K>1 .  (c2/K2)(t2*K)=(c*t)2/K .  In that space a person with a ruler measures light but their ruler shrinks by Puthoff's equatons such that dx2/K is the non local length of the persons modified ruler.  As a result their ruler scales exactly with the distance traversed by light so that they measure the same exact local speed of light as a person with a non-contracted ruler.

This of course scales the metric such that the metric near gravitational sources shrinks.  The gradient in the metric forces a curvature on space and time.
...

Hi Dustin,

I used "A" to represent a constant, because "K = K(x,y,z,t)" should be reserved as a variable function of the coordinates. Some people around here don't like it when a redefine letters of the alphabet from one post to another.

Look at it this way;

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2) = c2dt02 - (dx02 + dy02 + dz02)

Then you should see that space-time interval, ds2 does not change from flat space-time when Puthoff transforms length and time. It only affects the rulers and clocks.

What I'm trying to figure out is; that when accelerations are involved to change relative velocities, the equivalence principle breaks reciprocity in SR. The object has actually changed its relative potential, just like it would in a gravitational field. It is obvious when we use a turntable to do the experiment, but when objects are moving toward or away from each other, it's not so clear. What I need most is just more time to relax and think about this stuff. It's not high on my priority list right now.
« Last Edit: 09/23/2017 12:59 AM by WarpTech »

#### dustinthewind

• Full Member
• Posts: 616
• U.S. of A.
• Liked: 249
• Likes Given: 267
##### Re: Any resolutions to FTL paradoxes?
« Reply #302 on: 09/23/2017 01:14 AM »

The issue is about "Reciprocity" not symmetry.

This page, https://en.wikipedia.org/wiki/Time_dilation has a well written section on Reciprocity in SR, "velocity time dilation". Then in the next section on Gravitational time dilation it says;

"Contrarily to velocity time dilation, in which both observers measure the other as aging slower (a reciprocal effect), gravitational time dilation is not reciprocal. This means that with gravitational time dilation both observers agree that the clock nearer the center of the gravitational field is slower in rate, and they agree on the ratio of the difference."

The Hafele and Keating experiment supports no-reciprocity. Even the Michelson-Moorley experiment does not demonstrate reciprocity. So far, I have not found any experimental evidence to support a reciprocity effect. Gravitational time dilation is the result of the Equivalence principle alone, not any particular solution of GR.

Reciprocity is a requirement of the Lorentz transformation and the Lorentz group, it is assumed in its derivation. Reciprocity is what forces the paradox to happen. Reciprocity is not one of the postulates of SR. It is an assumption that reciprocity is required for "The laws of physics to remain invariant in all inertial reference frames". However, it is trivial to show that the law of physics remain unchanged, even when the flat Minkowski metric is transformed by a constant coefficient "A", in such a way that;

ds2 = (1/A)*c2dt2 - A*(dx2 + dy2 + dz2)

Resulting in a scaled system of units where "force" is an invariant wrt the constant "A". Leaving all physical laws and experimental data, including EM fields unchanged, but the transformation from A=1 to A>1 is not reciprocal. In the latter time is slow, in the former it's not. No reciprocity, no paradox. IMO this too is the result of the Equivalence principle, when one body accelerates to velocity v=0.6c and the other does not. The end result is not reciprocal.

As far as I'm concerned, until someone shows evidence of reciprocity, it is by no means proven.

I guess I know Puthoff wrote this equation this way. https://scholar.google.com/scholar?cluster=17157422968110203841&hl=en&as_sdt=0,26

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2)

where A=K

I am not sure why he converts c_o*t_o to c*t/K when it seems the conversion should be K*c=c_o and t*sqrt(K)=t_o so c_o*t_o=c*t*K .

However, I found it a bit easier to think of it in terms of the shrunken ruller.  For the distance that light traverses over a time in a polarized vacuum greater than 1 or K>1 .  (c2/K2)(t2*K)=(c*t)2/K .  In that space a person with a ruler measures light but their ruler shrinks by Puthoff's equatons such that dx2/K is the non local length of the persons modified ruler.  As a result their ruler scales exactly with the distance traversed by light so that they measure the same exact local speed of light as a person with a non-contracted ruler.

This of course scales the metric such that the metric near gravitational sources shrinks.  The gradient in the metric forces a curvature on space and time.
...

Hi Dustin,

I used "A" to represent a constant, because "K = K(x,y,z,t)" should be reserved as a variable function of the coordinates. Some people around here don't like it when a redefine letters of the alphabet from one post to another.

Look at it this way;

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2) = c2dt02 - (dx02 + dy02 + dz02)

Then you should see that space-time interval, ds2 does not change from flat space-time when Puthoff transforms length and time. It only affects the rulers and clocks.

What I'm trying to figure out is; that when accelerations are involved to change relative velocities, the equivalence principle breaks reciprocity in SR. The object has actually changed its relative potential, just like it would in a gravitational field. It is obvious when we use a turntable to do the experiment, but when objects are moving toward or away from each other, it's not so clear. What I need most is just more time to relax and think about this stuff. It's not high on my priority list right now.

Doesn't the speed of light co=K*c such that c2ot2o = K*c2t2  Why not use co?

I have noticed during acceleration the tilting of the light cone happens during acceleration symbolizing travel through time as one passes through space.  Their space axis now passes through time - their time axis now passes through space (space/time).  The space axis always tilting up in time in the direction of travel.  Time travel always being into the future it is the individual that accelerates that ages slower and travels into the future.

I would be curious however to explore 2 individuals who exist traveling through the universe at c/8.  One leaves their sibling at c/8 and decelerates so their light cone is now normal traveling away from their sibling at c/8 but stationary w.r.t. the light cone (he should technically age faster now).  - their light cone is not tilted while his siblings remains at c/8.  However, now to get back the sibling that left must accelerate to exceed c/8.  Now the sibling who left should technically age slower during this part of the trip.  I suppose the answer should be in the math.

I would suppose that is just one perspective from a set frame.  When they meet up their ages should be the same in all frames suggesting relativity may some what hide the concept of a frame with out a tilted light cone.

Edit: I think I see what is going on with Puthoff's S^2= metric.  By using c instead of cK this equation describes the difference in distance slow light would traverse in the slower time as opposed to the distance the normal light traverses in slower time.

Mistake made fixed to show correct equation:

c(K)2dt(K)2 - (x[K]2+y[K]2+z[K]2) = c2dt2/K - (x2+y2+z2)*K =
c(K)2dt(K)2 - c2dt(K)2 = c2dt2/K - c2dt2

« Last Edit: 09/25/2017 01:15 AM by dustinthewind »

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #303 on: 09/23/2017 03:52 AM »

Look at it this way;

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2) = c2dt02 - (dx02 + dy02 + dz02)

Then you should see that space-time interval, ds2 does not change from flat space-time when Puthoff transforms length and time. It only affects the rulers and clocks.

Doesn't the speed of light co=K*c such that c2ot2o = K*c2t2  Why not use co?

...

The coordinate speed of light is found by setting ds2 = 0. The coordinate speed of light in the x direction would be;

cK = c/K = dx/dt

If you do it this way, you don't need c0. I find it confuses a lot of people if you us c = c0/K. It's best to be specific, or define a different variable, cK for the coordinate speed.

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #304 on: 09/25/2017 12:10 AM »
....

c2dt(K)2 - (x[K]2+y[K]2+z[K]2) = c2dt2/K - (x2+y2+z2)*K

This is okay, but...

c2dt2/K - c(K)2dt(K)2 = c2dt2/K - c2dt2K

This makes no sense. c(K)2dt(K)2 = (cdt)2/K3,
assuming c(K) = c/K.

#### dustinthewind

• Full Member
• Posts: 616
• U.S. of A.
• Liked: 249
• Likes Given: 267
##### Re: Any resolutions to FTL paradoxes?
« Reply #305 on: 09/25/2017 12:16 AM »

Time as the Fourth dimension confuses me. In the three spatial dimensions, A co-ordinate (x,y,z) can be defined regardless of the inertial reference frame you are in. Yet, by the same rules, time cannot be given a particular co-ordinate point, as there is no "Universal Time", and ll time is relative to the particular inertial reference frame from which it is being measured.

How can you define a co-ordinate system without any fixed co-ordinates (along the time axis)?

My apologies.  I think I see what your talking about now.  I am not sure this will help but maybe the magnetic field is a good way to visualize multiple probabilities in time.  The magnetic field being velocity dependent (direction and magnitude.) .  Relative velocity also has connections with changes in time.  For a magnetic field it seems to represent multiple probabilities that might exist simultaneously.  I.e. a dipole relativistic electric field that changes depending on the observer.  This field appears to accommodate all observers  such that a particular observation collapses that probability and gives an actual observation.

This field of probability accommodates all directions x,y,z velocity, and maybe charge.  It does almost seem like multiple dimensions of possibility depending on the observer though unlike quantum I guess it isn't quite as random.  Unless the observers location and momentum were uncertain dx*dp.

I have a tendency to want to think of quantum mechanics as a field of possibilities that exist simultaneously.  Then when an observer interacts the field of probabilities collapses.  Similar to the universe stitching up some uncertainty in time as to what actually happens.  This to me almost suggest Wheeler-Feynman absorber theory or something similar to it.  https://en.wikipedia.org/wiki/Wheeler%E2%80%93Feynman_absorber_theory

#### dustinthewind

• Full Member
• Posts: 616
• U.S. of A.
• Liked: 249
• Likes Given: 267
##### Re: Any resolutions to FTL paradoxes?
« Reply #306 on: 09/25/2017 12:57 AM »
....

c2dt(K)2 - (x[K]2+y[K]2+z[K]2) = c2dt2/K - (x2+y2+z2)*K

This is okay, but...

c2dt2/K - c(K)2dt(K)2 = c2dt2/K - c2dt2K

This makes no sense. c(K)2dt(K)2 = (cdt)2/K3,
assuming c(K) = c/K.

Ack! your right, I had it backwards.  I should have written c(K)2dt(K)2 - c2dt(K)2 = c2dt2/K - c2dt2K

emphases on the 2nd speed of light being not a function of K.

Are you sure c(K)2dt(K)2 = (cdt)2/K3 ?

$\begin{matrix}&space;\Delta&space;t(K)=&space;\Delta&space;t&space;\sqrt{K}&space;\,\,\,\,&space;,&space;&&space;\Delta&space;r(K)=&space;\frac{\Delta&space;r}{\sqrt{K}}&space;\,\,\,\,,&space;&&space;\frac{\Delta&space;r(K)}{\Delta&space;t(K)}=\frac{\Delta&space;r}{\Delta&space;t\,K}=c(K)&space;\\&space;c(K)^{2}dt(K)^{2}=&space;c^{2}\,dt^2\,\frac{K}{K^{2}}&space;=&space;\frac{c^{2}dt^{2}}{K}\,\,\,\,&space;&&space;&&space;\end{matrix}$
« Last Edit: 09/25/2017 01:16 AM by dustinthewind »

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #307 on: 09/25/2017 04:16 AM »
....

c2dt(K)2 - (x[K]2+y[K]2+z[K]2) = c2dt2/K - (x2+y2+z2)*K

This is okay, but...

c2dt2/K - c(K)2dt(K)2 = c2dt2/K - c2dt2K

This makes no sense. c(K)2dt(K)2 = (cdt)2/K3,
assuming c(K) = c/K.

Ack! your right, I had it backwards.  I should have written c(K)2dt(K)2 - c2dt(K)2 = c2dt2/K - c2dt2K

emphases on the 2nd speed of light being not a function of K.

Are you sure c(K)2dt(K)2 = (cdt)2/K3 ?

$\begin{matrix}&space;\Delta&space;t(K)=&space;\Delta&space;t&space;\sqrt{K}&space;\,\,\,\,&space;,&space;&&space;\Delta&space;r(K)=&space;\frac{\Delta&space;r}{\sqrt{K}}&space;\,\,\,\,,&space;&&space;\frac{\Delta&space;r(K)}{\Delta&space;t(K)}=\frac{\Delta&space;r}{\Delta&space;t\,K}=c(K)&space;\\&space;c(K)^{2}dt(K)^{2}=&space;c^{2}\,dt^2\,\frac{K}{K^{2}}&space;=&space;\frac{c^{2}dt^{2}}{K}\,\,\,\,&space;&&space;&&space;\end{matrix}$

By your own equation above; dt(K)2 = dt2/K.

#### dustinthewind

• Full Member
• Posts: 616
• U.S. of A.
• Liked: 249
• Likes Given: 267
##### Re: Any resolutions to FTL paradoxes?
« Reply #308 on: 09/29/2017 05:29 AM »

Hi Dustin,

I used "A" to represent a constant, because "K = K(x,y,z,t)" should be reserved as a variable function of the coordinates. Some people around here don't like it when a redefine letters of the alphabet from one post to another.

Look at it this way;

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2) = c2dt02 - (dx02 + dy02 + dz02)

Then you should see that space-time interval, ds2 does not change from flat space-time when Puthoff transforms length and time. It only affects the rulers and clocks.

What I'm trying to figure out is; that when accelerations are involved to change relative velocities, the equivalence principle breaks reciprocity in SR. The object has actually changed its relative potential, just like it would in a gravitational field. It is obvious when we use a turntable to do the experiment, but when objects are moving toward or away from each other, it's not so clear. What I need most is just more time to relax and think about this stuff. It's not high on my priority list right now.

I get it now.  The dt and other dx are a functions of K where they are being operated on to put them in the non-variant form dto and dxo

Something i notice that was interesting was that distance dx^2+dy^2+dz^2 being a ruler could be substituted by the speed of light over a passage of time.

When I played with the math:
$\begin{matrix}&space;S^2=c^{2}dt[K]^{2}/K-K\left(dx[K]^{2}+dy[K]^{2}+dz[K]^{2}\right)&space;\\&space;S^2=c^{2}dt[K]^{2}/K-K\left(c[K]^{2}dt[K]^{2}\right)&space;\\&space;S^2=\left(\frac{ct[K]}{\sqrt{K}}-\sqrt{K}c[K]t[K]\right)\left(\frac{ct[K]}{\sqrt{K}}+\sqrt{K}c[K]t[K]\right)&space;\\&space;\frac{i \psi}{dt[K]}=\left(\frac{ic\psi}{S\sqrt{K}}\pm&space;\frac{\sqrt{K}ic[K]\psi}{S}\right)&space;\end{matrix}$

I may not have it quite right but it looks like we get something that almost looks like for the space term dx+dy+dz a retarded wave multiplied by an advanced wave.  Or maybe a positive index wave multiplied by a negative index wave.  This reminds me of Heidi Fearn's discussion a bit.

Not sure it would really indicate a retarded wave but it seemed interesting. Also interesting reguarding ftl communications if retarded waves can really exist but I am sure nature some how excludes their actual use for that.

Edit: Ok, I do like the standing waves a bit better and what Heidi describes does seem a lot like a standing wave.  Standing waves do have the backwards propagating wave if allowed the time.  Not sure it takes into account all the quantum phenomena. It might.  She mentions the advanced and retarded waves concept she used to explain quantum phenomena in a paper about the "quantum eraser" mentioned at time stamp 25:20
« Last Edit: 09/30/2017 05:28 AM by dustinthewind »

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #309 on: 09/29/2017 05:35 PM »

Hi Dustin,

I used "A" to represent a constant, because "K = K(x,y,z,t)" should be reserved as a variable function of the coordinates. Some people around here don't like it when a redefine letters of the alphabet from one post to another.

Look at it this way;

ds2 = (1/K)*c2dt2 - K*(dx2 + dy2 + dz2) = c2dt02 - (dx02 + dy02 + dz02)

Then you should see that space-time interval, ds2 does not change from flat space-time when Puthoff transforms length and time. It only affects the rulers and clocks.

What I'm trying to figure out is; that when accelerations are involved to change relative velocities, the equivalence principle breaks reciprocity in SR. The object has actually changed its relative potential, just like it would in a gravitational field. It is obvious when we use a turntable to do the experiment, but when objects are moving toward or away from each other, it's not so clear. What I need most is just more time to relax and think about this stuff. It's not high on my priority list right now.

I get it now.  The dt and other dx are a functions of K where they are being operated on to put them in the non-variant form dto and dxo

Something i notice that was interesting was that distance dx^2+dy^2+dz^2 being a ruler could be substituted by the speed of light over a passage of time.

When I played with the math:
$\begin{matrix}&space;S^2=c^{2}dt[K]^{2}/K-K\left(dx[K]^{2}+dy[K]^{2}+dz[K]^{2}\right)&space;\\&space;S^2=c^{2}dt[K]^{2}/K-K\left(c[K]^{2}dt[K]^{2}\right)&space;\\&space;S^2=\left(\frac{ct[K]}{\sqrt{K}}-\sqrt{K}c[K]t[K]\right)\left(\frac{ct[K]}{\sqrt{K}}+\sqrt{K}c[K]t[K]\right)&space;\\&space;\frac{i \psi}{dt[K]}=\left(\frac{ic\psi}{S\sqrt{K}}\pm&space;\frac{\sqrt{K}ic[K]\psi}{S}\right)&space;\end{matrix}$

I may not have it quite right but it looks like we get something that almost looks like for the space term dx+dy+dz a retarded wave multiplied by an advanced wave.  Or maybe a positive index wave multiplied by a negative index wave.  This reminds me of Heidi Fearn's discussion a bit. ...

Not sure it would really indicate a retarded wave but it seemed interesting. Also interesting reguarding ftl communications if retarded waves can really exist but I am sure nature some how excludes their actual use for that.

It appears you're still doing the math wrong by confusing dt with dt0 and dx with dx0, etc... That's why you're getting weird results. Your second line is simply the flat metric, no dependence on K at all since they all cancel out. The 3rd and 4th line are just confused...

I don't need advanced waves. I consider them simply as partial reflections in the polarizable vacuum. An outgoing EM wave leaving a gravitational field is red-shifted because it's losing energy to partial reflections as the refractive index changes. These partial reflected waves behave the same as advanced waves would, and cause the same effects, or so I believe.

« Last Edit: 09/29/2017 05:35 PM by WarpTech »

#### KelvinZero

• Senior Member
• Posts: 3578
• Liked: 490
• Likes Given: 126
##### Re: Any resolutions to FTL paradoxes?
« Reply #310 on: 10/03/2017 09:56 AM »
Hey I think you guys should check the OP and maybe self moderate.

The goal is to explain how paradoxes are avoided. The paradoxes are simple so the answers should be similarly simple.

If you are hoping to sell someone a ticket on your FTL, and they ask what they actually experience, a face full of math are not going to be convincing.

The topic also is not about arguing an FTL theory is actually part of this universe. It is purely about whether you can explain what behaviour you are even talking about when you say "FTL".

We have basically one "Good enough for Science fiction" solution for avoiding FTL paradoxes at the moment: Treating the CMB rest frame as special or, I think equivalently, defining instantaneous according to the CMB temperature: for example, right now the CMB temperature is 2.725°. So long as any FTL trip takes you to a point where the universe is older, in the sense that the CMB temperature is even colder, I believe no paradox is possible.

Parallel universes are often brought up as a solution for FTL and time travel in general. Papers postulating parallel universes don't add anything to the conversation unless they describe what you actually experience when you try to implement a paradox.

I have not yet seen a clear description of what a universe with FTL made possible by parallel universes looks like. All I can surmise is that people who jump into their FTL ships drunk and shouting about what a bastard their granddad was tend to never be seen again, but also strangers occasionally pop in and kill innocent people for things they purportedly would have done in the future. Since every action has an aspect of this paradox, I expect you would have a universe where there is an entirely fuzzy relationship between people who enter FTL and people who exit it. Sometimes there are similarities. Sometimes people vanish. Sometimes people with no histories appear. It is not very satisfactory.

#### RSE

• Member
• Posts: 7
• Plano, TX
• Liked: 1
• Likes Given: 0
##### Re: Any resolutions to FTL paradoxes?
« Reply #311 on: 11/28/2017 08:16 PM »
On the OP original question, I think both WarpTech and meberbs are correct – to a certain extent. It is a matter of reference frame perspective.

Let me provide the following thought problem, to explain this.

We have two communication stations, one on Earth and one circling Sirius at 8.7 light years away. They are continuously transmitting data to each other. According to GR, each perceived the incoming transmission from the other planet as having occurred 8.7 years ago. Logs are kept for 20 years at both ends.

So far, so good.

Somebody builds some form of FTL ship on earth. It travels to Sirius, .7 years, with a complete log of the earth transmissions from before the departure date, back 20 years. (I am not looking at how, or the perspective if the occupants. One set of headaches at a time, please.)

The ship popped into existence at Sirius. Since it went FTL, did it travel backwards in time? It depends on your reference frame. According to the Earth reference frame, a ship left, period. No paradox. According to the Sirius reference frame, it did travel backwards in time, per GR, but it travelled backwards in time from the future! It went backwards in time from exactly 8 years in the future, with information from the future, by Sirius'es reference frame. Sirius now knows, in advance, what the signals are going to be incoming for the next 8 years. Once again, no paradox, and the backward in time requirement of GR is upheld.

The ship loads the tapes from Sirius for Sirius'es last 20 years of transmissions. It heads back to Earth, with the same .7 travel time.

Does it arrive before it left? Absolutely not! It arrives 1.4 years after it left, (.7 going, .7 coming back), with the next 8 years of Sirius'es transmissions, in hand. Once again the ship travelled backwards in time, from the future, from Earth's reference frame. No paradox. (The only way the ship could arrive before it left is if it took negative duration for the trip, i.e., if it arrived at Sirius before it left Earth, by Earth's own reference frame. That truly would be time travel. . .
« Last Edit: 11/28/2017 08:27 PM by RSE »

#### meberbs

• Full Member
• Posts: 1388
• Liked: 1257
• Likes Given: 318
##### Re: Any resolutions to FTL paradoxes?
« Reply #312 on: 11/28/2017 08:45 PM »
(I am not looking at how, or the perspective if the occupants. One set of headaches at a time, please.)
Agreed, significant confusion comes from doing that, and it is irrelevant at the moment.

Does it arrive before it left? Absolutely not! It arrives 1.4 years after it left, (.7 going, .7 coming back), with the next 8 years of Sirius'es transmissions, in hand. Once again the ship travelled backwards in time, from the future, from Earth's reference frame. No paradox.
Describing a situation that doesn't involve a paradox does not mean that there are no situations that involve a paradox.

(The only way the ship could arrive before it left is if it took negative duration for the trip, i.e., if it arrived at Sirius before it left Earth, by Earth's own reference frame. That truly would be time travel. . .
But there are many reference frames equally valid as the Earth frame that do see the trip as having a negative duration. You have provided no reason why someone in one of those equally valid frames passing by Sirius could not just use the same type of FTL drive in their frame to go to Earth carrying all of the records from the other ship. Since in that frame the Earth ship arrived at Sirius before it left, this ship can go forward in time while it travels FTL to Earth and still arrive before the Earth ship left. I did all of the relevant calculations earlier for this type of situation.

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #313 on: 11/28/2017 10:29 PM »
(I am not looking at how, or the perspective if the occupants. One set of headaches at a time, please.)
Agreed, significant confusion comes from doing that, and it is irrelevant at the moment.

Does it arrive before it left? Absolutely not! It arrives 1.4 years after it left, (.7 going, .7 coming back), with the next 8 years of Sirius'es transmissions, in hand. Once again the ship travelled backwards in time, from the future, from Earth's reference frame. No paradox.
Describing a situation that doesn't involve a paradox does not mean that there are no situations that involve a paradox.

(The only way the ship could arrive before it left is if it took negative duration for the trip, i.e., if it arrived at Sirius before it left Earth, by Earth's own reference frame. That truly would be time travel. . .
But there are many reference frames equally valid as the Earth frame that do see the trip as having a negative duration. You have provided no reason why someone in one of those equally valid frames passing by Sirius could not just use the same type of FTL drive in their frame to go to Earth carrying all of the records from the other ship. Since in that frame the Earth ship arrived at Sirius before it left, this ship can go forward in time while it travels FTL to Earth and still arrive before the Earth ship left. I did all of the relevant calculations earlier for this type of situation.

In SR, time dilation as observed by two observers moving at constant relative velocity wrt each other is "reciprocal", meaning each observer sees the other's clock running slow. In GR, time dilation as observed by two observers at rest at different gravitational potentials is not reciprocal. The observer at a lower altitude sees the clock at a higher altitude run "fast" not slow. This is also the case when one observer is circling around the other observer at a constant angular speed, while the observer at the center is at rest in an inertial frame (feels no forces). The observer feeling the force pulling him in a circular motion, is observed to have a slower clock than the observer at the center. It is not reciprocal.

To my knowledge, there have been no experiments, no tests of SR that verify/prove reciprocity. It is a prediction of the mathematics when objects are moving toward or away from each other, but there is no physical evidence which proves it. Experiments so far have only shown non-reciprocity in the results. Meberbs assumes reciprocity is real and his assertions are based on this assumption. I for one do not agree.

« Last Edit: 11/28/2017 10:31 PM by WarpTech »

#### meberbs

• Full Member
• Posts: 1388
• Liked: 1257
• Likes Given: 318
##### Re: Any resolutions to FTL paradoxes?
« Reply #314 on: 11/29/2017 12:00 AM »
In SR, time dilation as observed by two observers moving at constant relative velocity wrt each other is "reciprocal", meaning each observer sees the other's clock running slow. In GR, time dilation as observed by two observers at rest at different gravitational potentials is not reciprocal. The observer at a lower altitude sees the clock at a higher altitude run "fast" not slow. This is also the case when one observer is circling around the other observer at a constant angular speed, while the observer at the center is at rest in an inertial frame (feels no forces). The observer feeling the force pulling him in a circular motion, is observed to have a slower clock than the observer at the center. It is not reciprocal.
It does not matter that the gravitational/acceleration effect on time dilation is not symmetric. General relativity still has time dilation due to relative velocities, and that part is still symmetric, and still means that FTL allows time travel.

Also, your description of someone circling someone at rest is incomplete. (For clarity I will refer to person A as the one in the center and B as circling.) A sees B's clock run slower, due to the fact that B is both moving and accelerating. B will not see A's clock running faster by the same amount, because the velocity portion of the time dilation is symmetric, and B sees A's clock moving at the difference between the acceleration and velocity effects.

This kind of thing is seen in GPS satellites where the clock speedup of the satellites from being further out of Earth's gravity well is reduced by the slowdown due to their relative velocity.

To my knowledge, there have been no experiments, no tests of SR that verify/prove reciprocity. It is a prediction of the mathematics when objects are moving toward or away from each other, but there is no physical evidence which proves it. Experiments so far have only shown non-reciprocity in the results. Meberbs assumes reciprocity is real and his assertions are based on this assumption. I for one do not agree.
False. Maybe you missed the last post on this topic that you never replied to. I am not basing this on any kind of assumption without experimental support. You simply cannot explain the experimental results without reciprocity.

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #315 on: 11/29/2017 02:41 AM »
To my knowledge, there have been no experiments, no tests of SR that verify/prove reciprocity. It is a prediction of the mathematics when objects are moving toward or away from each other, but there is no physical evidence which proves it. Experiments so far have only shown non-reciprocity in the results. Meberbs assumes reciprocity is real and his assertions are based on this assumption. I for one do not agree.
False. Maybe you missed the last post on this topic that you never replied to. I am not basing this on any kind of assumption without experimental support. You simply cannot explain the experimental results without reciprocity.
False. Time dilation is caused by damping of the quantum wave functions as explained in my paper, published in the proceedings from Estes Park, last year. As long as you ignore this and the references it contains, there is no point in responding to you.

Simply put; A gravitational field around a planet size object has a greater damping factor near the surface than at higher altitude. A test clock in motion relative to this gravitational source, will have a higher damping factor than  clock a rest relative to the source. As long as you consider the vacuum field and its relative damping factor, there is no time travel. Clocks tick at different rates due to the relative damping factor. Lorentz Transformations are only a description of what is observed due to the c being a local constant, they are not the cause of it.
« Last Edit: 11/29/2017 02:45 AM by WarpTech »

#### meberbs

• Full Member
• Posts: 1388
• Liked: 1257
• Likes Given: 318
##### Re: Any resolutions to FTL paradoxes?
« Reply #316 on: 11/29/2017 06:40 AM »
False. Time dilation is caused by damping of the quantum wave functions as explained in my paper, published in the proceedings from Estes Park, last year. As long as you ignore this and the references it contains, there is no point in responding to you.
You asked for experiments that show that time dilation in relativity works the way that relativity says it does. You have been provided with those experiments and explanations of them but you continue to ignore the results.  You have not demonstrated any way that your claims that special relativity is wrong can be consistent with the results of these experiments.

Lorentz Transformations are only a description of what is observed due to the c being a local constant, they are not the cause of it.
Cause is irrelevant for this discussion, only the resulting behavior. I don't think you ever gave a clear answer to whether your theory produces the same results as General Relativity or not (at least at macroscopic scales that are relevant to this discussion). If it is the same results, then there is no need to discuss your theory, standard GR works perfectly well for this discussion. If not, then before you insist on discussing your theory, you need to work out how it can somehow still explain the experimental results that were listed.

Remember that I already demonstrated in this thread that your explanation of the "twin paradox" was inconsistent. When you did not understand a basic part of special relativity, I am not sure why you would think that your theory of quantum gravity would be consistent.

#### WarpTech

• Full Member
• Posts: 1314
• Do it!
• Vista, CA
• Liked: 1351
• Likes Given: 1820
##### Re: Any resolutions to FTL paradoxes?
« Reply #317 on: 11/29/2017 02:25 PM »
False. Time dilation is caused by damping of the quantum wave functions as explained in my paper, published in the proceedings from Estes Park, last year. As long as you ignore this and the references it contains, there is no point in responding to you.
You asked for experiments that show that time dilation in relativity works the way that relativity says it does. You have been provided with those experiments and explanations of them but you continue to ignore the results.  You have not demonstrated any way that your claims that special relativity is wrong can be consistent with the results of these experiments.

Lorentz Transformations are only a description of what is observed due to the c being a local constant, they are not the cause of it.
Cause is irrelevant for this discussion, only the resulting behavior. I don't think you ever gave a clear answer to whether your theory produces the same results as General Relativity or not (at least at macroscopic scales that are relevant to this discussion). If it is the same results, then there is no need to discuss your theory, standard GR works perfectly well for this discussion. If not, then before you insist on discussing your theory, you need to work out how it can somehow still explain the experimental results that were listed.

Remember that I already demonstrated in this thread that your explanation of the "twin paradox" was inconsistent. When you did not understand a basic part of special relativity, I am not sure why you would think that your theory of quantum gravity would be consistent.

The consistency of my "model" with GR is definitively spelled out with equations and examples in my paper, in the proceedings from Estes Park. I am not going to re-write it here for your convenience!!! Until you take the 20 minutes to read it, I ask that you stop the derogatory comments about a paper you have not read.

As to demonstrating consistency with the experiments, that will require another paper. It's not something I can explain in detail on a forum. I have better things to do with my time than write papers for someone who refuses to read them.

#### RSE

• Member
• Posts: 7
• Plano, TX
• Liked: 1
• Likes Given: 0
##### Re: Any resolutions to FTL paradoxes?
« Reply #318 on: 11/29/2017 03:36 PM »
Meberbs, I would like to “show my work” in my analysis.

1. At earth time “t”, there is a continuous stream of data going to Sirius. It arrives at Sirius 8.7 years later. This is standard Relativity.

2. At earth time “t prime”, which is exactly 8.7 years after earth time “t”, a FTL ship set out for Sirius. Its cargo is a complete transcript of all the transmission from earth to Sirius for 20 years, up to the moment that the FTL ship starts. The ship arrives at Sirius, .7 years from when it left earth.

3 At Sirius, the transcripts are matched up. They are found to be in sync, up to the current transmissions being received at Sirius, but the transmissions on the ship now have an extra 8 years worth of data, that has not been received by Sirius yet. (Earth time “t prime” - .7 years of transit equal 8 years) Under Relativity, where did this data come from?

4.  From Sirius's reference frame, under Relativity, it could have only come from the future. 8 years from the future, to be precise. How could it get from the future to Sirius, at the time the data arrived at Sirius? It has to travel backward in time, from the future, exactly 8 years. This is the calculation required from Relativity, as you point out.

5. Here is where it gets tricky. Where is the future starting point? From Sirius's reference frame, it is 8 years in the future from the point where the ship, bearing the data, arrived. Yet the arrival time for the ship, at Sirius, is actually “in the future” to start with. Let me explain.

The data being received at Sirius from earth's beam is from the past. Exactly 8.7 years in the past. So when you match up the data, from the FTL ship, it is being done at a time 8 years in the future from when the data was sent from earth, via beam (at time “t”). It can't be any earlier, as the data to match with (from the earth beam) would not have arrived at Sirius yet for comparison. So upon the ship arriving at Sirius, it did so .7 years after it left earth at “t prime”, by Sirius's reference frame. It has to, for the comparison to match. (The ship left earth at “t prime” 8.7 years after the signals to be compared are transmitted. It takes 8.7 years for them to arrive from the transmission. For them to match, both data records have to be at the same place, at the same time, in order to be matched.) Note, 8 years in the “future”, from Sirius's reference frame, coincides with the departure of the ship, minus the transit time, in earth's reference frame.

6. From earth's reference frame, the results is very simple. The ship disappears. Period. There is no way to observe the ship, as any method of observation is limited by c. Assuming that the FTL ship arrived at Sirius, after .7 years transit, it could not be observed on earth for 8.7 +.7 years.

7. On the return to earth, everything applies the same way. The ship leaves Sirius, (with the Sirius's data transcripts) and returns to earth. It takes .7 years transit time. The ship is now perceived from earth's reference frame as returning from “the future”, coming backwards in time, as required by Relativity. It has 8 years of future data, just like when it arrived at Sirius. But it does not arrive before it left, because it left in the Sirius's reference frame, which would have to be perceived from the earth's reference frame as “the future”, the the amount of travel backwards in time cannot exceed the difference between the “distance” minus the transit time required.

Meberbs, I went to all this detail to try to determine exactly where the “point of asymmetry” between the two viewpoints arises. Thank you for your time.

#### meberbs

• Full Member
• Posts: 1388
• Liked: 1257
• Likes Given: 318
##### Re: Any resolutions to FTL paradoxes?
« Reply #319 on: 11/29/2017 04:19 PM »
The consistency of my "model" with GR is definitively spelled out with equations and examples in my paper, in the proceedings from Estes Park. I am not going to re-write it here for your convenience!!! Until you take the 20 minutes to read it, I ask that you stop the derogatory comments about a paper you have not read.
The answer is either a yes or a no. If you don't show that the answer is in general a "yes" then the answer is no.

As to demonstrating consistency with the experiments, that will require another paper. It's not something I can explain in detail on a forum. I have better things to do with my time than write papers for someone who refuses to read them.
What you are saying here is that it is not consistent with general relativity, because if it was, you wouldn't need another paper to show its consistency with the listed experiments. Since you need another paper to do so, it is clear that the paper you have written does not answer the questions I asked. (Anyway, I have skimmed it, but it looked like you didn't actually answer the questions I have, which your statements here now confirm)

A paper showing that your model is consistent with basic tests of relativity is something you should want to write anyway if you actually care about your theory. The fact that I showed your explanation of a basic application of relativity (the "twin paradox") was inconsistent, means that you need to go back and update your model to account for what you learned in that discussion, and until you have done so, I don't know why I should spend time reviewing something that has known flaws.

Tags: